D i Sj O i n t S e t S Data Structures and Algorithms

CSE 373 SP 18 - KASEY CHAMPION

Warm Up

Finding a MST using Kruskal’s algorithm

CSE 373 SP 18 - KASEY CHAMPION 2

Warm Up

Finding a MST using Kruskal’s algorithm

CSE 373 SP 18 - KASEY CHAMPION 3

New ADT

Set ADT Disjoint-Set ADT

state state
Set of elements Set of Sets
- Elements must be unique! - Disjoint: Elements must be unique across sets
- Norequired order - Norequired order

- Each set has representative
Count of Sets

Count of Elements

behavior i
. . behavior
create(x) - creates a new set with a single
member, x makeSet(x) — creates a new set within the disjoint set where the only
add(x) - adds x into set if it is unique, otherwise member is x. Picks representative for set
add is ignored findSet(x) — looks up the set containing element x, returns
remove(x) — removes x from set representative of that set

size() — returns current number of union(x, y) — looks up set containing x and set containing y, combines two
elements in set sets into one. Picks new representative for resulting set

—— ——< 7 TN\
®) (a) ©
® @

SE 373 SP 18 - KASEY CHAMPION

Example

new()

makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
findSet(a) @ 6
findSet(d)

union(a, c)

CSE 373 WI 18 — MICHAEL LEE 5

Example

new()
makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
findSet(a)
findSet(d)
union(a, c)

union(b, d)

CSE 373 WI 18 — MICHAEL LEE

Example

new()
makeSet(a)

makeSet(b)

makeSet(c)
makeSet(d)
makeSet(e)

findSet(a)

findSet(d)

union(a, c)

union(b, d)

findSet(a) == findSet(c)
findSet(a) == findSet(d)

CSE 373 WI 18 — MICHAEL LEE 7

Implementation

state

Set of Sets

- Disjoint: Elements must be unique
across sets

- No required order

- Each set has representative

Count of Sets
behavior

makeSet(x) — creates a new set within the
disjoint set where the only member is x.
Picks representative for set

findSet(x) — looks up the set containing
element x, returns representative of that
set

union(x, y) — looks up set containing x and
set containing y, combines two sets into
one. Picks new representative for resulting
set

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodelInventory

makeSet (x) -create a new
tree of size 1 and add to

our forest

findSet (x) -locates node with
X and moves up tree to find
root

union (x, y)-append tree
with yv as a child of tree

with x

TreeSet<Ex

——

SetNode overallRoot

TreeSet (x)
add (x)

remove (x, V)

getRep () -returns data of
overallRoot

SetNode<E>

E data

Collection<SetNode>
children

SetNode (x)
addChild (x)

removeChild(x, V)

CSE 373 SP 18 - KASEY CHAMPION

8

Implement makeSet(x)

makeSet (0)
makeSet (1)
makeSet (2)
makeSet (3)
makeSet (4)

makeSet (5)

Worst case runtime?

0O(1)

forest

o) ()

o) o) @] o]

B

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodelInventory

makeSet (x) —create a new tree
of size 1 and add to our
forest

as a child of tree with x

findSet (x) -locates node with x
and moves up tree to find root

union (x, y)-append tree with y

CSE 373 SP 18 - KASEY CHAMPION

9

TreeDisjointSet<E>

Collection<TreeSet> forest

Implement union(x, y) i

forest NodelLocations> nodelInventory

union (3, 5) 1 2 3 5 makeSet (x) -create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root

union (x, y)-append tree with y
as a child of tree with x

CSE 373 SP 18 - KASEY CHAMPION 10

Implement union(x, y)

union (3,

union (2,

o)

forest

©) (@) [

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodelInventory

makeSet (x) —-create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root

union (x, y)-append tree with y
as a child of tree with x

CSE 373 SP 18 - KASEY CHAMPION 11

TreeDisjointSet<E>

Implement union(x, y)

Collection<TreeSet> forest
Dictionary<NodeValues,

forest NodelLocations> nodelInventory
))
union (3, 5) 2 3 makeSet (x) -create a new tree
of size 1 and add to our
union (2, 1) forest
findSet (x) -locates node with x
. (2 5) 1 5 and moves up tree to find root
union
! union (x, y)-append tree with y

as a child of tree with x

CSE 373 SP 18 - KASEY CHAMPION 12

Implement union(x, y)

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodelInventory

makeSet (x) —-create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root

union (x, y)-append tree with y
as a child of tree with x

forest
)
union (3, 5) 0 2
union (2, 1)
union (2, 5) a 3
5
T
0 1 2

CSE 373 SP 18 - KASEY CHAMPION 13

Implement findSet(x)

forest

)
findSet (0)@ 0 2 4

findSet (3) 7, ‘ \
findSet (5) /)A IR

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodelInventory

makeSet (x) —-create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root

union (x, y)-append tree with y
as a child of tree with x

o —
=

N
\
w
I

| |

Worst case runtime? , \ / I I
o(n) Q U
non?

Worst case runtime of u j Y\ + <
O(n) u

CSE 373 SP 18 - KASEY CHAMPION 14

Improving union |
/(;7b e @)0(\1%

Trees can be unbalanced —? /7

let rank(x) be a number representing the upper bound of the height of x so rank(x) >= height(x)
Keep track of rank of all trees

When unioning make the tree with larger rank the root

If it’s a tie, pick one randomly and increase rank by one

rank =0 rank = 2 rank =0 rank=1 [

e 2 U(/:\g ©) (9] Y
- ~) <

CSE 373 SP 18 - KASEY CHAMPION 15

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for

each tree. _p) % - &5 el

~ rank=0

. union (2, 13)
ﬂunion(ll, 12)
6union(2, 8)

16
CSE 373 SP 18 - KASEY CHAMPION

Practice

Given the following disjoint-set what would be the result of the following calls on union if we add

the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for
each tree.

rank = 3
e : N
6 9 10) (1 7
1
0 2) (3 12 13 2

union (2, 13) \\i : 4//

union (12, 4)

union (2, 8)

Does this improve the worst case runtimes?

findSet is more likely to be O(log(n)) than O(n)

CSE 373 SP 18 - KASEY CHAMPION

17

Improving findSet()

Every time we call findSet() you must traverse all the levels of the tree to find
representative

Collapse tree into fewer levels by updating parent pointer of each node you visit
Whenever you call findSet() update each node you touch’s parent pointer to point directly to overallRoot

rank =3 rank = 2
findSet (5) 4 : N : O
findSet (4) 6 //___9/’::,"’10 1 7 5 4 6 9 10 1 7
. L 1

Does this improve the N
worst case runtimes? 2 (3 12 (13 2 5 5

findSet is more likely to /
be O(1) than O(log(n)) \ @ / \ /

CSE 373 SP 18 - KASEY CHAMPION 18

Example

Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw
the resulting forest caused by these calls:

. makeSet (a

. makeSet
. makeSet
. makeSet
. makeSet
. makeSet
. makeSet
. union(c, e

. union(d, e

b

)
(b)
(c)
(d)
(e)
(f)
(h)

h

.union(a, c¢

.union

14

.union

14

(
(9
.union (b
(9
(b

.union (b, c¢

rank = 2

~ ~

, h

CSE 373 SP 18 - KASEY CHAMPION

19

Array Representation

Like heaps, pretend the tree exists, but use an Array for actual implementation

CSE 373 SP 18 - KASEY CHAMPION 20

