
Disjoint Sets Data Structures and Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1



Warm Up
Finding a MST using Kruskal’s algorithm

CSE 373 SP 18 - KASEY CHAMPION 2

a

b

h

d
c

i

4

8

2

1
1

8
7

1

14

6

4 e

fg

7

9

10

2



Warm Up

CSE 373 SP 18 - KASEY CHAMPION 3

a

b

h

d
c

i

4

8

2

1
1

8

7

1

14

6

4 e

fg

7

9

10

2

Finding a MST using Kruskal’s algorithm



New ADT

CSE 373 SP 18 - KASEY CHAMPION 4

Set ADT

create(x) - creates a new set with a single 

member, x

Count of Elements

state

behavior

Set of elements

- Elements must be unique!

- No required order

add(x) - adds x into set if it is unique, otherwise 

add is ignored

remove(x) – removes x from set

size() – returns current number of 

elements in set

Disjoint-Set ADT

makeSet(x) – creates a new set within the disjoint set where the only 

member is x. Picks representative for set

Count of Sets

state

behavior

Set of Sets

- Disjoint: Elements must be unique across sets

- No required order

- Each set has representative

findSet(x) – looks up the set containing element x, returns 

representative of that set

union(x, y) – looks up set containing x and set containing y, combines two 

sets into one. Picks new representative for resulting set

D

B

C

A

D

C

F

B

A

G
H



Example
new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

CSE 373 WI 18 – MICHAEL LEE 5

c

Rep: 2

e

Rep: 4

b

Rep: 1

d

Rep: 3

a

Rep: 0



Example

CSE 373 WI 18 – MICHAEL LEE 6

c

e

Rep: 4

b

Rep: 1

d

Rep: 3

a

Rep: 0

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

union(b, d)



Example

CSE 373 WI 18 – MICHAEL LEE 7

c

e

Rep: 4

b

Rep: 1

d

a

Rep: 0

findSet(a) == findSet(c)

findSet(a) == findSet(d)

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

union(b, d)



Implementation

CSE 373 SP 18 - KASEY CHAMPION 8

TreeDisjointSet<E>

makeSet(x)-create a new 
tree of size 1 and add to 
our forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with 
x and moves up tree to find 
root

union(x, y)-append tree 
with y as a child of tree 
with x 

Disjoint-Set ADT

makeSet(x) – creates a new set within the 

disjoint set where the only member is x. 

Picks representative for set

Count of Sets

state

behavior

Set of Sets

- Disjoint: Elements must be unique 

across sets

- No required order

- Each set has representative

findSet(x) – looks up the set containing 

element x, returns representative of that 

set

union(x, y) – looks up set containing x and 

set containing y, combines two sets into 

one. Picks new representative for resulting 

set

Dictionary<NodeValues, 
NodeLocations> nodeInventory

TreeSet<E>

TreeSet(x)

state

behavior
SetNode overallRoot

add(x)

remove(x, y)
getRep()-returns data of 
overallRoot

SetNode<E>

SetNode(x)

state

behavior

E data

addChild(x)

removeChild(x, y)

Collection<SetNode> 
children



Implement makeSet(x)

Worst case runtime?

O(1) 
CSE 373 SP 18 - KASEY CHAMPION 9

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root
union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory

0 1 2 3 4 5

forest

0 1 2 3 4 5

makeSet(0)

makeSet(1)

makeSet(2)

makeSet(3)

makeSet(4)

makeSet(5)



Implement union(x, y)

CSE 373 SP 18 - KASEY CHAMPION 10

union(3, 5) 0 1 2 3 4 5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root
union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory



Implement union(x, y)

CSE 373 SP 18 - KASEY CHAMPION 11

union(3, 5)

union(2, 1)

0 1 2 3 4

5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root
union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory



Implement union(x, y)

CSE 373 SP 18 - KASEY CHAMPION 12

union(3, 5)

union(2, 1)

union(2, 5)

0 2 3 4

5

forest

0 1 2 3 4 5
-> -> -> -> -> ->

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root
union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory

1



Implement union(x, y)

CSE 373 SP 18 - KASEY CHAMPION 13

union(3, 5)

union(2, 1)

union(2, 5)

0 2

3

4

5

forest

0 1 2 3 4 5

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root
union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory

1



Implement findSet(x)

CSE 373 SP 18 - KASEY CHAMPION 14

findSet(0)

findSet(3)

findSet(5)

0 2

3

4

5

forest

0 1 2 3 4 5

1

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root
union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory

Worst case runtime?

O(n) 

Worst case runtime of union?

O(n)



Improving union

Problem: Trees can be unbalanced

Solution: Union-by-rank!

- let rank(x) be a number representing the upper bound of the height of x so rank(x) >= height(x)

- Keep track of rank of all trees

- When unioning make the tree with larger rank the root

- If it’s a tie, pick one randomly and increase rank by one

CSE 373 SP 18 - KASEY CHAMPION 15

2

3

5

1

4

rank = 0 rank = 2

0 4

rank = 0 rank = 0rank = 1



Practice
Given the following disjoint-set what would be the result of the following calls on union if we add 
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for 
each tree.

CSE 373 SP 18 - KASEY CHAMPION
16

6

4

5

0

rank = 2

3

1

2

rank = 0

8

10

12

9

rank = 2

1
1

7

13

rank = 1

union(2, 13)
union(4, 12)
union(2, 8)



Practice
Given the following disjoint-set what would be the result of the following calls on union if we add 
the “union-by-rank” optimization. Draw the forest at each stage with corresponding ranks for 
each tree.

CSE 373 SP 18 - KASEY CHAMPION
17

8

10

12

9

rank = 3

1
1

union(2, 13)
union(12, 4)
union(2, 8)

6

4

5

0 3

1

2

7

13

Does this improve the worst case runtimes?

findSet is more likely to be O(log(n)) than O(n)



Improving findSet()
Problem: Every time we call findSet() you must traverse all the levels of the tree to find 
representative

Solution: Path Compression
- Collapse tree into fewer levels by updating parent pointer of each node you visit
- Whenever you call findSet() update each node you touch’s parent pointer to point directly to overallRoot

CSE 373 SP 18 - KASEY CHAMPION 18

8

10

12

9 1
1

6

4

5

3 2

7

13

rank = 3

findSet(5)
findSet(4)

8

10

12

9 1
1

645

3 2

7

13

rank = 2

Does this improve the 
worst case runtimes?
findSet is more likely to 
be O(1) than O(log(n))



Example
Using the union-by-rank and path-compression optimized implementations of disjoint-sets draw 
the resulting forest caused by these calls:

1. makeSet(a)
2. makeSet(b)
3. makeSet(c)
4. makeSet(d)
5. makeSet(e)
6. makeSet(f)
7. makeSet(h)
8. union(c, e)
9. union(d, e)
10.union(a, c)
11.union(g, h)
12.union(b, f)
13.union(g, f)
14.union(b, c)

CSE 373 SP 18 - KASEY CHAMPION 19

e

cb

rank = 2

da

g

f

h



Array Representation
Like heaps, pretend the tree exists, but use an Array for actual implementation

CSE 373 SP 18 - KASEY CHAMPION 20


