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Announcements

Project 3 Part 1 grades are out (only sent to one partner)
Project 3 Part 2 due tonight.

Next written homework out soon. 
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Warm Up

Run Dijkstra’s Algorithm on this graph to find the shortest paths from s to t.
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Today

Last Time: Topological Sorting and Strongly Connected Components

Today: One more graph algorithm. Something completely different: Minimum Spanning 
Trees
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Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose where to build wires to 
connect all these cities to the plant. 
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Minimum Spanning Trees

What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. (the edges span the graph)

- The graph on just those edges is connected.

- The minimum weight set of edges that meet those conditions.

Assume all edge weights are positive.

Claim: The set of edges we pick never has a cycle. Why?
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Aside: Trees 

Our BSTs had:
- A root

- Left and/or right children 

- Connected and no cycles

Our heaps had:
- A root

- Varying numbers of children

- Connected and no cycles

On graphs our tees:
- Don’t need a root (the vertices aren’t ordered, and we can start BFS from anywhere)

- Varying numbers of children

- Connected and no cycles 
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An undirected, connected acyclic graph.

Tree (when talking about graphs)



MST Problem

What do we need? A set of edges such that:
- Every vertex touches at least one of the edges. (the edges span the graph)

- The graph on just those edges is connected.

- The minimum weight set of edges that meet those conditions.

Our goal is a tree!

We’ll go through two different algorithms for this problem today.
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Given: an undirected, weighted graph G

Find: A minimum-weight set of edges such that you 

can get from any vertex of G to any other on only 

those edges.

Minimum Spanning Tree Problem



Example

Try to find an MST of this graph:
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Prim’s Algorithm

Algorithm idea: choose an arbitrary starting point. Add a new edge that:
- Will let you reach more vertices.

- Is as light as possible

We’d like each not-yet-connected vertex to be able to tell us the lightest edge we could add 
to connect it. 
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Code
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PrimMST(Graph G) 

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

foreach(edge (source, v) )

v.dist = w(source,v)

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

add u.bestEdge to spanning tree

foreach(edge (u,v) leaving u){

if(w(u,v) < v.dist){

v.dist = w(u,v)

v.bestEdge = (u,v)

}

}

mark u as processed

}



Try it Out
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Does This Algorithm Always Work?

Prim’s Algorithm is a greedy algorithm. Once it decides to include an edge in the MST it 
never reconsiders its decision. 

Greedy algorithms rarely work. 

There are special properties of MSTs that allow greedy algorithms to find them.
- Robbie can tell you more offline.

In fact MSTs are so magical that there’s more than one greedy algorithm that works.
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A different Approach

Prim’s Algorithm started from a single vertex and reached more and more other vertices.

Prim’s thinks vertex by vertex (add the closest vertex to the currently reachable set).

What if you think edge by edge instead?

Start from the lightest edge; add it if it connects new things to each other (don’t add it if it 
would create a cycle)

This is Kruskal’s Algorithm.
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Kruskal’s Algorithm
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KruskalMST(Graph G) 

initialize each vertex to be a connected component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same component

}

}



Try It Out
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Kruskal’s Algorithm: Running Time
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Kruskal’s Algorithm: Running Time

Running a new [B/D]FS in the partial MST, at every step seems inefficient.

Do we have an ADT that will work here?

Not yet…

Kasey will tell you about the “Union-Find” data structure next week. 
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Try it Out
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Some Extra Comments

Prim was the employee at Bell Labs in the 1950’s

The mathematician in the 1920’s was Boruvka
- He had a different also greedy algorithm for MSTs.

- Boruvka’s algorithm is trickier to implement, but is useful in some cases.

There’s at least a fourth greedy algorithm for MSTs…

If all the edge weights are distinct, then the MST is unique.

If some edge weights are equal, there may be multiple spanning trees. Prim’s/Dijkstra’s are
only guaranteed to find you one of them.
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Aside: A Graph of Trees

A tree is an undirected, connected, and acyclic graph.

How would we describe the graph Kruskal’s builds. 

It’s not a tree until the end.

It’s a forest!

A forest is any undirected and acyclic graph 
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EVERY TREE IS A FOREST.



Appendix: MST Properties, 
Another MST Application

CSE 373 SP 18 - KASEY CHAMPION 25



Why do all of these MST Algorithms Work?

MSTs satisfy two very useful properties:

Cycle Property: The heaviest edge along a cycle is NEVER part of an MST.

Cut Property: Split the vertices of the graph any way you want into two sets A and B. The 
lightest edge with one endpoint in A and the other in B is ALWAYS part of an MST. 

Whenever you add an edge to a tree you create exactly one cycle, you can then remove any 
edge from that cycle and get another tree out. 

This observation, combined with the cycle and cut properties form the basis of all of the
greedy algorithms for MSTs.
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One More MST application

Let’s say you’re building a new building. 

There are very important building donors coming to visit TOMORROW, 
- and the hallways are not finished. 

You have n rooms you need to show them, connected by the unfinished hallways.

Thanks to your generous donors you have n-1 construction crews, so you can assign one to 
each of that many hallways. 
- Sadly the hallways are narrow and you can’t have multiple crews working on the same hallway. 

Can you finish enough hallways in time to give them a tour?
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Given: an undirected, weighted graph G

Find: A spanning tree such that the weight of the 

maximum edge is minimized.

Minimum Bottleneck Spanning Tree Problem



MSTs and MBSTs
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Given: an undirected, weighted graph G

Find: A spanning tree such that the weight of the 

maximum edge is minimized.

Minimum Bottleneck Spanning Tree Problem

Given: an undirected, weighted graph G

Find: A minimum-weight set of edges such that 

you can get from any vertex of G to any other on 

only those edges.

Minimum Spanning Tree Problem
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Finding MBSTs
Algorithm Idea: want to use smallest edges. Just start with the smallest edge and add it if it 
connects previously unrelated things (and don’t if it makes a cycle).

Hey wait…that’s Kruskal’s Algorithm!

Every MST is an MBST (because Kruskal’s can find any MST when looking for MBSTs)

but not vice versa (see the example on the last slide). 

If you need an MBST, any MST algorithm will work.

There are also some specially designed MBST algorithms that are faster (see Wikipedia)

Takeaway: When you’re modeling a problem, be careful to really understand what you’re 
looking for. There may be a better algorithm out there.
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