
Shortest Paths Data Structures and

Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1

Announcements

Hey, you’re not Kasey.

I’m Robbie

- Kasey’s in Europe. She’ll be back Monday.

- Kasey will be triaging email (but don’t expect immediate responses)

- Office hours will shift a little (check the calendar on the webpage later in the week.)

CSE 373 SP 18 - KASEY CHAMPION 2

Warm Up

Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?

When processing a vertex insert neighbors in alphabetical order.

CSE 373 SP 18 - KASEY CHAMPION 3

s t

v

u x

w

y

search(graph)

mark all vertices as unknown

toVisit.enqueue(first vertex)

while(toVisit is not empty)

current = toVisit.dequeue()

for (v : current.outNeighbors())

if (v is unknown){

toVisit.enqueue(v)

mark v as known

visited.add(current)

This Week

Last week:
Kasey showed you a new object – graphs

This week:

How do we actually use graphs to solve problems?

CSE 373 SP 18 - KASEY CHAMPION 4

Shortest Paths

How does Google Maps figure out this is the fastest way to get to office hours?

CSE 373 SP 18 - KASEY CHAMPION 5

Representing Maps as Graphs

How do we represent a map as a graph? What are the vertices and edges?

CSE 373 SP 18 - KASEY CHAMPION 6

Representing Maps as Graphs

CSE 373 SP 18 - KASEY CHAMPION 7

K

R

D

P

H
S

4

1 2

2

4

3

5

Shortest Paths

CSE 373 SP 18 - KASEY CHAMPION 8

The length of a path is the sum of the edge weights on that path.

Shortest Path Problem

Given: a directed graph G and vertices s and t

Find: the shortest path from s to t

s
w

y

u

t

v x

1 4

1

5

4
2 5

6

3

Unweighted graphs

Let’s start with a simpler version: the edges are all the same weight (unweighted)

If the graph is unweighted, how do we find a shortest paths?

CSE 373 SP 18 - KASEY CHAMPION 9

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

What’s the shortest path from s to s?
- Well….we’re already there.

What’s the shortest path from s to u or v?
- Just go on the edge from s

From s to w,x, or y?
- Can’t get there directly from s, if we want a length 2 path, have to go through u or v.

CSE 373 SP 18 - KASEY CHAMPION 10

s t

v

u

y

w

x

Unweighted Graphs: Key Idea

To find the set of vertices at distance k, just find the set of vertices at distance k-1, and see if
any of them have an outgoing edge to an undiscovered vertex.

Do we already know an algorithm that does something like that?

Yes! BFS!

CSE 373 SP 18 - KASEY CHAMPION 11

bfsShortestPaths(graph G, vertex source)

toVisit.enqueue(source)

source.dist = 0

while(toVisit is not empty){

current = toVisit.dequeue()

for (v : current.outNeighbors())

{

if (v is unknown){

v.distance = current.distance + 1

v.predecessor = current

toVisit.enqueue(v)

mark v as known

}

}

}

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

CSE 373 SP 18 - KASEY CHAMPION 12

s t

v

u

y

w

x

1

1

2

2

2

3

bfsShortestPaths(graph G, vertex source)

toVisit.enqueue(source)

source.dist = 0

while(toVisit is not empty){

current = toVisit.dequeue()

for (v : current.outNeighbors())

{

if (v is unknown){

v.distance = current.distance + 1

v.predecessor = current

toVisit.enqueue(v)

mark v as known

}

}

}

What about the target vertex?

CSE 373 SP 18 - KASEY CHAMPION 13

Given: a directed graph G and vertices s,t

Find: the shortest path from s to t.

Shortest Path Problem

BFS didn’t mention a target vertex…

It actually finds the shortest path from s to every other vertex.

Weighted Graphs

Each edge should represent the “time” or “distance” from one vertex to another.

Sometimes those aren’t uniform, so we put a weight on each edge to record that number.

The length of a path in a weighted graph is the sum of the weights along that path.

We’ll assume all of the weights are positive
- For GoogleMaps that definitely makes sense.

- Sometimes negative weights make sense. Today’s algorithm doesn’t work for those graphs

- There are other algorithms that do work.

CSE 373 SP 18 - KASEY CHAMPION 14

Weighted Graphs: Take 1

BFS works if the graph is unweighted. Maybe it just works for weighted graphs too?

CSE 373 SP 18 - KASEY CHAMPION 15

s
tv

w

u

What went wrong? When we found a shorter path from s to u, we needed to update the

distance to v (and anything whose shortest path went through u) but BFS doesn’t do that.

1

20

1

1 10

∞

∞ ∞ ∞

x

∞11

20 21

2

223

Weighted Graphs: Take 2

You already do this all the time.

In project 2, you reduced implementing a hashset to implementing a hashmap.

Any time you use a library, you’re reducing your problem to the one the library solves.

Can we reduce finding shortest paths on weighted graphs to finding them on unweighted
graphs?

CSE 373 SP 18 - KASEY CHAMPION 16

Using an algorithm for Problem B to solve

Problem A.

Reduction (informally)

Weighted Graphs: A Reduction

Given a weighted graph, how do we turn it into an unweighted one without messing up the
edge lengths?

CSE 373 SP 18 - KASEY CHAMPION 17

s

u

v

t
2

2

2

1

1

s

u

v

t

s

u

v

t 2

s

u

v

t
2

2

2

1

1

2

Transform Input

Transform Output

Unweighted

Shortest Paths

Weighted Graphs: A Reduction

What is the running time of our
reduction on this graph?

O(|V|+|E|) of the modified graph,
which is…slow.

CSE 373 SP 18 - KASEY CHAMPION 18

Does our reduction even work on this
graph?

Ummm….

Tl;dr: If your graph’s weights are all small positive integers, this reduction might work great.

Otherwise we probably need a new idea.

s

u

v

t
200

5000

5000

150

1

s

u

v

t
𝜋

0.5

5000

3

1

Weighted Graphs: Take 3

So we can’t just do a reduction.

Instead let’s try to figure out why BFS worked in the unweighted case, and try to make the
same thing happen in the weighted case.

Why did BFS work on unweighted graphs? How did we avoid this problem:

When we used a vertex u to update shortest paths we already knew the exact shortest path
to u. So we never ran into the update problem

So if we process the vertices in order of distance from s, we have a chance.

CSE 373 SP 18 - KASEY CHAMPION 19

s
tv

w

u

1

20

1

1 10 3

x

11

21

2

22

Weighted Graphs: Take 3

Goal: Process the vertices in order of distance from s

Idea:

Have a set of vertices that are “known”
- (we know at least one path from s to them).

Record an estimated distance
- (the best way we know to get to each vertex).

If we process only the vertex closest in estimated distance, we won’t ever find a shorter path
to a processed vertex.

CSE 373 SP 18 - KASEY CHAMPION 20

Dijkstra’s Algorithm

CSE 373 SP 18 - KASEY CHAMPION 21

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark all vertices unprocesed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u.dist+w(u,v) < v.dist){

v.dist = u.dist+w(u,v)

v.predecessor = u

}

}

mark u as processed

} s
tv

w

u

1

20

1

1 1

x

1

Vertex Distance Predecessor Processed

s

w

x

u

v

t

Dijkstra’s Algorithm

CSE 373 SP 18 - KASEY CHAMPION 22

Dijkstra(Graph G, Vertex source)

initialize distances to ∞

mark source as distance 0

mark all vertices unprocessed

while(there are unprocessed vertices){

let u be the closest unprocessed vertex

foreach(edge (u,v) leaving u){

if(u.dist+w(u,v) < v.dist){

v.dist = u.dist+w(u,v)

v.predecessor = u

}

}

mark u as processed

}
s

tv

w

u

1

20

1

1 1

x

1

Vertex Distance Predecessor Processed

s 0 -- Yes

w 1 s Yes

x 2 w Yes

u 3 x Yes

v 4 u Yes

t 5 v Yes

Implementation Details

One of those lines of pseudocode was a little sketchy

> let u be the closest unprocessed vertex

What ADT have we talked about that might work here?

Minimum Priority Queues!

CSE 373 SP 18 - KASEY CHAMPION 23

Min Priority Queue ADT

removeMin() – returns the element

with the smallest priority, removes it

from the collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not remove

the element with the smallest priority

insert(value) – add a new element to

the collection

Making Minimum Priority Queues Work

They won’t quite work “out of the box”.

We don’t have an update priority method. Can we add one?
- Percolate up!

To percolate u’s entry in the heap up we’ll have to get to it.
- Each vertex need pointer to where it appears in the priority queue

- I’m going to ignore this point for the rest of the lecture.

CSE 373 SP 18 - KASEY CHAMPION 24

Min Priority Queue ADT

removeMin() – returns the element

with the smallest priority, removes it

from the collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not remove

the element with the smallest priority

insert(value) – add a new element to

the collection

DecreasePriority(e, p) – decreases the

priority of element e down to p.

Running Time Analysis

CSE 373 SP 18 - KASEY CHAMPION 25

Dijkstra(Graph G, Vertex source)

initialize distances to ∞, source.dist to 0

mark all vertices unprocessed

initialize MPQ as a Min Priority Queue

add source at priority 0

while(MPQ is not empty){

u = MPQ.getMin()

foreach(edge (u,v) leaving u){

if(u.dist+w(u,v) < v.dist){

if(v.dist == ∞)

MPQ.insert(v, u.dist+w(u,v))

else

MPQ.decreasePriority(v, u.dist+w(u,v))

v.dist = u.dist+w(u,v)

v.predecessor = u

}

}

mark u as processed

}

Another Application of Shortest Paths

Shortest path algorithms are obviously useful for GoogleMaps.

The wonderful thing about graphs is they can encode arbitrary relationships among
objects.

I don’t care if you remember this problem

I don’t care if you remember how we apply shortest paths.

I just want you to see that these algorithms have non-obvious applications.

CSE 373 SP 18 - KASEY CHAMPION 26

Another Application of Shortest Paths

CSE 373 SP 18 - KASEY CHAMPION 27

Given: a directed graph G, where each edge weight is the probability

of successfully transmitting a message across that edge

Find: the path from s to t with maximum probability of message

transmission

Maximum Probability Path

I have a message I need to get from point s to point t.

But the connections are unreliable.

What path should I send the message along so it has the best chance of arriving?

s

u

v

t0.6

0.8

0.97

0.7

0.2

Another Application of Shortest Paths

Let each edge’s weight be the probability a message is sent successfully across the edge.

What’s the probability we get our message all the way across a path?
- It’s the product of the edge weights.

We only know how to handle sums of edge weights.

Is there a way to turn products into sums?

log 𝑎𝑏 = log 𝑎 + log 𝑏

CSE 373 SP 18 - KASEY CHAMPION 28

s

u

v

t0.6

0.8

0.97

0.7

0.2

Another Application of Shortest Paths

We’ve still got two problems.

1. When we take logs, our edge weights become negative.

2. We want the maximum probability of success, but that’s the longest path not the shortest
one.

Multiplying all edge weights by negative one fixes both problems at once!

We reduced the maximum probability path problem to a shortest path problem by taking
− log() of each edge weight.

CSE 373 SP 18 - KASEY CHAMPION 29

s

u

v

t-0.74

-0.32

-0.04

-0.51

-2.32

Maximum Probability Path Reduction

CSE 373 SP 18 - KASEY CHAMPION 30

s

u

v

t0.74

0.32

0.04

0.51

2.32

s

u

v

t0.6

0.8

0.97

0.7

0.2

s

u

v

t0.6

0.8

0.97

0.7

0.2

s

u

v

t0.74

0.32

0.04

0.51

2.32

Weighted Shortest Paths

Transform Input

Transform Output

