
Introduction to Graphs Data Structures and Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1



Warm Up

CSE 373 SP 18 - KASEY CHAMPION 2

mergeSort(input) {
if (input.length == 1)

return
else

smallerHalf = mergeSort(new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)

}

0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

1 if n<= 1
2T(n/2) + n otherwise

T(n) = 

The Merge Sort algorithm has the same 
runtime for its worst, best and average case. 
Create a recurrence that represents this 
runtime:



Review: Unfolding Technique

CSE 373 SP 18 - KASEY CHAMPION 3

! " =
1 %ℎ'" " = 0
2! " − 1 + 1 ,-ℎ'.%/0'

! 5 = 2! 5 − 1 + 1

= 2(2! 4 − 1 + 1) + 1

= 2(2 2! 3 − 1 + 1 + 1) + 1

= 2(2 2(2! 2 − 1 + 1) + 1 + 1) + 1

= 2(2 2(2(2! 1 − 1 + 1) + 1) + 1 + 1) + 1

= 2(2 2(2(2(1) + 1) + 1) + 1 + 1) + 1

= 26 + 5

= 27 + "

The pattern by which we move towards 
the base case is n – 1
We would call this a “linear recurrence”



Unfolding Technique

CSE 373 SP 18 - KASEY CHAMPION 4

! " =
1 %ℎ'" " ≤ 1

2! "
2 + " +,ℎ'-%./'

! 16 = 2! 16
2 + 16

= 2(2! 8
2 + 8) + 16

= 2(2(2! 4
2 + 4) + 8) + 16

= 2(2(2(2! 2
2 + 2) + 4) + 8) + 16

= 2(2(2(2(1) + 2) + 4) + 8) + 16

= 25 + 6
7

5
16= 16 + 16 + 16 + 16 + 16 = 2 8 + 6

7

8
"

The pattern by which we move towards the 
base case is not linear
Multiple recursive calls cause branching
Is there an easier way to find the closed 
form?



Tree Method

CSE 373 SP 18 - KASEY CHAMPION 5

! "

! " =
1 %ℎ'" " ≤ 1

2! "
2 + " +,ℎ'-%./'

! "
2 + ! "

2 + "

! "
2 ! "

2

"

1. What work to do?

2. Replace with definition

3. Break apart non recursive and recursive pieces

4. Replace with definition

5. Break apart non recursive and recursive pieces

6. …

! "
4 + ! "

4 + "2 ! "
4 + ! "

4 + "2
"
2

"
2

! "
4 ! "

4 ! "
4 ! "

4

! "
2 + ! "

2 + " +,ℎ'-%./'

"
4

"
4

"
4

"
4

… … … … … … … …



Tree Method

6

n

n
2

n
2

n
4

n
4

n
4

n
4

n
8

n
8

n
8

n
8

n
8

n
8

n
8

n
8

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

… … … … … … … …… … …… … … … …

How many pieces of 
work at each level?

How much work 
at each level?

How much work per 
level?

1 n

2

4

8

n

n

n

n

n

n

How many levels?

log(n)

Runtime

& ' =
1 )ℎ+' ' ≤ 1
2& '

2 + ' ./ℎ+0)12+

&(') = 5
678

9:;< =
'



Tree Method Formulas
How much work is done by recursive levels (branch nodes)?
1. How many nodes are on each branch level i? branchNum(i)

- i = 0 is overall root level
- How many recursive calls are in each recursive branch to the power of which branch

2. At each level i, how much work does a single node do? branchWork(i)
3. How many recursive levels are there? branchCount

- Based on the pattern of how we get down to base case

How much work is done by the base case level (leaf nodes)?
1. How much work does a single leaf node do? leafWork
2. How many leaf nodes are there? leafCount

- How many branch nodes are in the second to last level x recursive calls per node

CSE 373 SP 18 - KASEY CHAMPION 7

!"#$%&'(" )*%+ = -
./0

1234567894:

;%<=#ℎ?$@ ' ;%<=#ℎA*%+(')

?*=!"#$%&'(" )*%+ = D"<EA*%+×D"<EG*$=H = D"<EA*%+×;%<=#ℎ?$@49IJKLKMN

O = =
1 )ℎ"= = ≤ 1

2O
=
2
+ = *Hℎ"%)'&"

branchNum(i) = 2i

branchWork(i) = (n/ 2i)

branchCount = log2n - 1

O(= > 1) = -
./0

UVWX 4YZ

2.
=
2.

leafWork = 1

leafCount = 2log2n = n

O = ≤ 1 = =

O = = -
./0

UVWX 4YZ

2.
=
2.

+ = = = log^ = + =



Tree Method Practice

8

! " =
4 %ℎ'" " ≤ 1
3! "

4 + ,"- ./ℎ'0%12'

,n-

, n
4

-

… …

, n
4

-
, n
4

-

, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-

… … …… … …… … …… … …… … …… … …… … …… … ……

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Answer the following 
questions:
1. How many nodes on 

each branch level?
2. How much work for 

each branch node?
3. How much work per 

branch level?
4. How many branch 

levels?
5. How much work for 

each leaf node?
6. How many leaf nodes?

EXAMPLE PROVIDED BY CS 161 – JESSICA SU
HTTPS://WEB.STANFORD.EDU/CLASS/ARCHIVE/CS/CS161/CS161.1168/LECTURE3.PDF

! "
4 ! "

4 ! "
4

! "
4 + ! "

4 + ! "
4 + ,"-

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture3.pdf


Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 9

Level (i) Number of 
Nodes

Work per 
Node

Work per 
Level

0 1 !"2 !"2

1 3 !
"

4

% 3

16
!"%

2 9 !
"

16

% 9

256
!"%

base 3+,-./ 4 12+,-./

1. How many nodes on each branch level?

2. How much work for each branch node?

3. How much work per branch level?

4. How many branch levels?

5. How much work for each leaf node?

6. How many leaf nodes?

30

!
"

40
%

log. " − 1

4

5 " =
4 7ℎ9" " ≤ 1

35
"

4
+ !"% <=ℎ9>7?@9

Combining it all together…

30!
"

40
%
=

3

16

0

!"%

5 " = A
0BC

+,-D / EF
3

16

0

!"% + 4"+,-.G

3+,-D / power of a log
H+,-I J = K+,-I L

"+,-D G



Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 10

! " = $
%&'

()*+ , -. 3
16

%
2"3 + 4"()*67

! " = 2"3 1
1 − 3

16
+ 4"()*67

! " = 2"3
3
16

()*+ ,
− 1

3
16 − 1

+ 4"()*67

! " ∈ :("3)

$
%&=

>
2?(@) = 2$

%&=

>
?(@)

factoring out a 
constant

! " = 2"3 $
%&'

()*+ , -. 3
16

%
+ 4"()*67

$
%&'

,-.
A% = A, − 1

A − 1

finite geometric series

$
%&'

B
A% = 1

1 − A

infinite geometric 
series

when -1 < x < 1

If we’re trying to prove upper bound…

! " = 2"3$
%&'

B 3
16

%
+ 4"()*67

Closed form:



Is there an easier way?
What if you don’t want an exact closed form?

Sorry, no

If we want to find a big Θ

Yes!

CSE 373 SP 18 - KASEY CHAMPION 11



Master Theorem

CSE 373 SP 18 - KASEY CHAMPION 12

! " =
$ %ℎ'" " = 1
)! "

* + ", -.ℎ'/%01'

Given a recurrence of the following form:

Then thanks to magical math brilliance we can assume the following:

! " ∈ Θ ",log7 ) < 9

log7 ) = 9 ! " ∈ Θ ", log: "

log7 ) > 9 ! " ∈ Θ "<=>? @

If

If

If

then

then

then



Apply Master Theorem

CSE 373 SP 18 - KASEY CHAMPION 13

! " =
1 %ℎ'" " ≤ 1
2! "

2 + " +,ℎ'-%./'

! " =
0 %ℎ'" " = 1

1! "
2 + "3 +,ℎ'-%./'

log7 1 = 8 ! " ∈ Θ "3 log; "
log7 1 > 8 ! " ∈ Θ "=>?@ A

If

If

! " ∈ Θ "3log7 1 < 8If then

then

then

Given a recurrence of the form:

a = 2
b = 2
c = 1
d = 1

log7 1 = 8 ⇒ log; 2 = 1

! " ∈ Θ "3 log; " ⇒ Θ "D log; "



Reflecting on Master Theorem
The case 
- Recursive case conquers work more quickly than it divides work
- Most work happens near “top” of tree
- Non recursive work in recursive case dominates growth, nc term

The case 
- Work is equally distributed across call stack (throughout the “tree”)
- Overall work is approximately work at top level x height

The case 
- Recursive case divides work faster than it conquers work
- Most work happens near “bottom” of tree
- Leaf work dominates branch work

CSE 373 SP 18 - KASEY CHAMPION 14

! " =
$ %ℎ'" " = 1

)! "
* + ", -.ℎ'/%01'

log5 ) = 6 ! " ∈ Θ ", log9 "
log5 ) > 6 ! " ∈ Θ ";<=> ?

If

If

! " ∈ Θ ",log5 ) < 6If then

then

then

Given a recurrence of the form: log5 ) < 6

log5 ) = 6

log5 ) > 6

A')BC-/D ≈ $ ";<=> ?

ℎ'0Fℎ. ≈ log5 )
*/)"6ℎC-/D ≈ ",log5 )



Introduction to Graphs

CSE 373 SP 18 - KASEY CHAMPION 15



Inter-data Relationships
Arrays
Categorically associated

Sometimes ordered

Typically independent

Elements only store pure 
data, no connection info

CSE 373 SP 18 - KASEY CHAMPION 16

A

B C

Trees
Directional Relationships

Ordered for easy access

Limited connections

Elements store data and 
connection info

0 1 2

A B C

Graphs
Multiple relationship 
connections

Relationships dictate 
structure

Connection freedom!

Both elements and 
connections can store data

A

B

C



Graph: Formal Definition
A graph is defined by a pair of sets G = (V, E) where…
- V is a set of vertices

- A vertex or “node” is a data entity

- E is a set of edges
- An edge is a connection between two vertices

CSE 373 SP 18 - KASEY CHAMPION 17

A

B

CD

E

F

G

H

V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H), 
(C, B), (B, D), (D, E), (D, F),
(F, G), (G, H)}



Applications

Physical Maps

- Airline maps

- Vertices are airports, edges are flight paths

- Traffic

- Vertices are addresses, edges are streets

Relationships

- Social media graphs

- Vertices are accounts, edges are follower relationships

- Code bases

- Vertices are classes, edges are usage

Influence

- Biology

- Vertices are cancer cell destinations, edges are migration paths 

Related topics

- Web Page Ranking

- Vertices are web pages, edges are hyperlinks

- Wikipedia

- Vertices are articles, edges are links

SO MANY MORREEEE

www.allthingsgraphed.com

CSE 373 SP 18 - KASEY CHAMPION 18

http://www.allthingsgraphed.com/


Graph Vocabulary
Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges containing that vertex

A : 1, B : 1, C : 1
- In-degree – the number of directed edges that point to a vertex

A : 0, B : 2, C : 1
- Out-degree – the number of directed edges that start at a vertex

A : 1, B : 1, C : 1
CSE 373 SP 18 - KASEY CHAMPION 19

A B

C

V = { A, B, C }
E = { (A, B), (B, C) } inferred (B, A) and (C,B)

V = { A, B, C }
E = { (A, B), (B, C), (C, B) } A

B

C

Undirected Graph:

Undirected Graph:



Food for thought
Is a graph valid if there exists a vertex with a degree of 0?

CSE 373 SP 18 - KASEY CHAMPION 20

A
B

C

A has an “in degree” of 0

A
B

C

B has an “out degree” of 0

A
B

C

C has both an “in degree” 
and an “out degree” of 0

Is this a valid graph?

A

Yes!

A B C
A B

CD

Are these valid? Yup

Sure

Yes



Graph Vocabulary
Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges

CSE 373 SP 18 - KASEY CHAMPION 21

A B

A


