

Introduction to Graphs

Data Structures and Algorithms

Warm Up

The Merge Sort algorithm has the same runtime for its worst, best and average case. Create a recurrence that represents this runtime:

 $T(n) = -\begin{cases} 1 & \text{if } n <= 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$

Review: Unfolding Technique

$$T(n) = - \begin{cases} 1 \text{ when } n = 0 \\ 2T(n-1) + 1 \text{ otherwise} \end{cases}$$

T(5) = 2T(5-1) + 1

- = 2(2T(4 1) + 1) + 1
- = 2(2(2T(3 1) + 1) + 1) + 1)
- = 2(2(2(2T(2 1) + 1) + 1) + 1) + 1)
- = 2(2(2(2(2T(1 1) + 1) + 1) + 1) + 1) + 1)
- = 2(2(2(2(2(1) + 1) + 1) + 1) + 1) + 1)

 $= 2^5 + 5$

 $= 2^{n} + n$

The pattern by which we move towards the base case is n - 1We would call this a "**linear recurrence**"

Unfolding Technique

$$T(n) = -\begin{cases} 1 \text{ when } n \leq 1\\ 2T\left(\frac{n}{2}\right) + n \text{ otherwise} \end{cases}$$

$$T(16) = 2T\left(\frac{16}{2}\right) + 16$$

$$= 2(2T\left(\frac{8}{2}\right) + 8) + 16$$

$$= 2(2(2T\left(\frac{4}{2}\right) + 4) + 8) + 16$$
$$= 2(2(2(2T\left(\frac{2}{2}\right) + 2) + 4) + 8) + 16$$

$$= 2(2(2(2(1) + 2) + 4) + 8) + 16$$

= 16 + 16 + 16 + 16 = 2⁴ + $\sum_{1}^{4} 16$ = 2 ^{\sqrt{n}} + $\sum_{1}^{\sqrt{n}} n$

The pattern by which we move towards the base case is **not** linear Multiple recursive calls cause **branching** Is there an easier way to find the closed form?

Tree Method

- What work to do? 1.
- Replace with definition 2.
- Break apart non recursive and recursive pieces 3.
- Replace with definition 4.
- Break apart non recursive and recursive pieces 5.

...

Tree Method Formulas

How much work is done by recursive levels (branch nodes)?

1. How many nodes are on each branch level i? branchNum(i)

- i = 0 is overall root level
- How many recursive calls are in each recursive branch to the power of which branch
- 2. At each level i, how much work does a single node do? branchWork(i)
- 3. How many recursive levels are there? branchCount

branchCount

- Based on the pattern of how we get down to base case

Recursive work =

branchNum(i) = 2ⁱ

branchWork(i) = (n/ 2ⁱ)

branchCount = $log_2n - 1$

$$T(n > 1) = \sum_{i=0}^{\log_2 n - 1} 2^i \left(\frac{n}{2^i}\right)$$

leafCount = $2^{\log 2n} = n$

How much work is done by the base case level (leaf nodes)?

- 1. How much work does a single leaf node do? leafWork
- 2. How many leaf nodes are there? leafCount
 - How many branch nodes are in the second to last level x recursive calls per node

 $NonRecursive work = leafWork \times leafCount = leafWork \times branchNum^{numLevels}$

$$T(n) = \sum_{i=0}^{\log_2 n-1} 2^i \left(\frac{n}{2^i}\right) + n = n \log_2 n + n$$

$$T(n) = -\begin{cases} 1 \text{ when } n \le 1\\ 2T\left(\frac{n}{2}\right) + n \text{ otherwise} \end{cases}$$

$$T(n \le 1) = n$$

leafWork = 1

8

Tree Method Practice

- 1. How many nodes on each branch level?
- 2. How much work for each branch node?
- 3. How much work per branch level?
- $3^{i}c\left(\frac{n}{4^{i}}\right)^{2} = \left(\frac{3}{16}\right)^{i}cn^{2}$

 3^i

 $c\left(\frac{n}{\Lambda i}\right)^2$

- 4. How many branch levels? $\log_4 n 1$
- 5. How much work for each leaf node? 4

6. How many leaf nodes? $3^{\log_4 n}$

power of a log $x^{\log_b y} = y^{\log_b x}$

$$T(n) = - \begin{cases} 4 \text{ when } n \leq 1\\ 3T\left(\frac{n}{4}\right) + cn^2 \text{ otherwise} \end{cases}$$

Level (i)	Number of Nodes	Work per Node	Work per Level
0	1	cn^2	cn^2
1	3	$c\left(\frac{n}{4}\right)^2$	$\frac{3}{16}cn^2$
2	9	$c\left(\frac{n}{16}\right)^2$	$\frac{9}{256}cn^2$
base	$3^{\log_4 n}$	4	$12^{\log_4 n}$

Combining it all together...

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + 4n^{\log_4 3}$$

$$n^{\log_4 3}$$

Tree Method Practice

$$T(n) = \sum_{i=0}^{\log_4 n^{-1}} \left(\frac{3}{16}\right)^i cn^2 + 4n^{\log_4 3}$$

factoring out a
constant
$$\sum_{i=a}^{b} cf(i) = c \sum_{i=a}^{b} f(i)$$

$$T(n) = cn^2 \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i + 4n^{\log_4 3}$$

finite geometric series

$$\sum_{i=0}^{n-1} x^{i} = \frac{x^{n} - 1}{x - 1}$$

Closed form:

$$T(n) = cn^2 \left(\frac{\frac{3^{\log_4 n}}{16} - 1}{\frac{3}{16} - 1}\right) + 4n^{\log_4 3}$$

If we're trying to prove upper bound...

$$T(n) = cn^2 \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i + 4n^{\log_4 3}$$

infinite geometric series $\sum_{i=0}^{\infty} x^{i} = \frac{1}{1-x}$ when -1 < x < 1

$$T(n) = cn^2 \left(\frac{1}{1 - \frac{3}{16}}\right) + 4n^{\log_4 3}$$
$$T(n) \in O(n^2)$$

Is there an easier way?

What if you don't want an exact closed form?

Sorry, no

If we want to find a big Θ

Yes!

Master Theorem

Given a recurrence of the following form:

$$T(n) = - \begin{bmatrix} d \text{ when } n = 1 \\ aT\left(\frac{n}{b}\right) + n^{c} \text{ otherwise} \end{bmatrix}$$

Then thanks to magical math brilliance we can assume the following:

If
$$\log_b a < c$$
 then $T(n) \in \Theta(n^c)$

If $\log_b a = c$ then $T(n) \in \Theta(n^c \log_2 n)$

If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

Apply Master Theorem

$$T(n) = -\begin{cases} 1 \text{ when } n \le 1 \\ 2T\left(\frac{n}{2}\right) + n \text{ otherwise} \end{cases}$$

$$a = 2 \\ b = 2 \\ c = 1 \\ d = 1 \end{cases}$$

$$\log_b a = c \Rightarrow \log_2 2 = 1$$

 $T(n) \in \Theta(n^c \log_2 n) \Rightarrow \Theta(n^1 \log_2 n)$

Reflecting on Master Theorem

Given a recurrence of the form:

$$T(n) = \frac{d \text{ when } n = 1}{aT\left(\frac{n}{b}\right) + n^c \text{ otherwise}}$$
If $\log_b a < c$ then $T(n) \in \Theta(n^c)$
If $\log_b a = c$ then $T(n) \in \Theta(n^c \log_2 n)$
If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

The $\log_b a < c$ case

- Recursive case conquers work more quickly than it divides work
- Most work happens near "top" of tree
- Non recursive work in recursive case dominates growth, n^c term

The $\log_b a = c$ case

- Work is equally distributed across call stack (throughout the "tree")
- Overall work is approximately work at top level x height

 $\begin{aligned} height &\approx \log_{b} a \\ branchWork &\approx n^{c}\log_{b} a \\ leafWork &\approx d(n^{\log_{b} a}) \end{aligned}$

The $\log_b a > c$ case

- Recursive case divides work faster than it conquers work
- Most work happens near "bottom" of tree
- Leaf work dominates branch work

Inter-data Relationships

Arrays

Categorically associated

Sometimes ordered

Typically independent

Elements only store pure data, no connection info

0 1 2 A B C

Trees

Directional Relationships

Ordered for easy access

Limited connections

Elements store data and connection info

Graphs

Multiple relationship connections

Relationships dictate structure

Connection freedom!

Both elements and connections can store data

Graph: Formal Definition

A graph is defined by a pair of sets G = (V, E) where...

- V is a set of vertices
 - A vertex or "node" is a data entity

V = { A, B, C, D, E, F, G, H }

- E is a set of edges
 - An edge is a connection between two vertices

E = { (A, B), (A, C), (A, D), (A, H), (C, B), (B, D), (D, E), (D, F), (F, G), (G, H)}

Applications

Physical Maps

- Airline maps
 - Vertices are airports, edges are flight paths
- Traffic
 - Vertices are addresses, edges are streets

Relationships

- Social media graphs
 - Vertices are accounts, edges are follower relationships
- Code bases
 - Vertices are classes, edges are usage

Influence

- Biology
 - Vertices are cancer cell destinations, edges are migration paths

Related topics

- Web Page Ranking
 - Vertices are web pages, edges are hyperlinks
- Wikipedia
 - Vertices are articles, edges are links

SO MANY MORREEEE

www.allthingsgraphed.com

Graph Vocabulary

Graph Direction

- Undirected graph – edges have no direction and are two-way

V = { A, B, C }

- E = { (A, B), (B, C) } *inferred* (B, A) and (C,B)
- **Directed graphs** edges have direction and are thus one-way

V = { A, B, C } E = { (A, B), (B, C), (C, B) }

Degree of a Vertex

- **Degree** – the number of edges containing that vertex

A : 1, B : 1, C : 1

- In-degree the number of directed edges that point to a vertex
 A: 0, B: 2, C: 1
- Out-degree the number of directed edges that start at a vertex
 A: 1, B: 1, C: 1

Food for thought

Is a graph valid if there exists a vertex with a degree of 0?

A

Yes

A has an "in degree" of 0 B has an Is this a valid graph? Are these valid?

Yes!

C has both an "in degree" and an "out degree" of 0

С

Sure

Graph Vocabulary

Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges