I m p I e m e n t i n g H e a p S Data Structures and Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1

Warm Up

Construct a Min Binary Heap by inserting the following values in this order:

5, 10, 15, 20, 7, 2

Min Binary Heap Invariants
—each node has at most 2 children
—each node’s children are larger than itself

state - new nodes are added from left to right completely filling each level
Set of Comparab|e values before creating a hew one
- Ordered based on “priority”

behavior |: | }

removeMin() — returns the element with
the smallest priority, removes it from the

collection ‘ \ ‘ 5
peekMin() — find, but do not remove the

element with the smallest priority

insert(value) — add a new element to the

collection 20 10 _ 15

CSE 373 SP 18 - KASEY CHAMPION

Midterm Grades Posted!

Statistics:
Minimum: 22.0
Maximum: 85.0
Mean: 67.28 (79.1%)
Median: 69.0 (81.1%)
Standard Deviation: 10.05

CSE 373 SP 18 - KASEY CHAMPION 3

Im plementi ng Hea pS How do we find the minimum node?

peekMin() = arr[0]

| How do we find the last node?

lastNode() = arr[size — 1]

How do we find the next open space?

openSpace() = arr[size]

D E F G How do we find a node’s left child?
| | | | leftChild(i) = 2i + 1

How do we find a node’s right child?

| J K L rightChild(i) = 2i + 2

How do we find a node’s parent?

Fill array in level-order from left to right
parent(i) =

CSE 373 SP 18 - KASEY CHAMPION

Heap Implementation Runtimes

char peekMin ()
timeToFindMin

| O(1)
Array 0O(1)

B C char removeMin ()
| | findLastNodeTime + removeRootTime + numSwaps * swapTime

n+1+log(n)*1 0O(n)

| | | Array 1+1+log(n)*1 O(log(n))

void insert (char)
findNextSpace + addValue + numSwaps * swapTime

n+1+log(n)*1 ©(n)

Array 1+1+log(n)*1 ©O(log(n))

CSE 373 SP 18 - KASEY CHAMPION

Building a Heap

Insert has a runtime of O(log(n))
If we want to insert a n items...

Building a tree takes O(nlog(n))
Add a node, fix the heap, add a node, fix the heap

Can we do better?
Add all nodes, fix heap all at once!

CSE 373 SP 18 - KASEY CHAMPION

6

Cleaver building a heap — Floyd’s Method

Facts of binary trees
Increasing the height by one level doubles the number of possible nodes

A complete binary tree has half of its nodes in the leaves
A new piece of data is much more likely to have to percolate down to the bottom than be the smallest element in

heap

1. Dump all the new values into the bottom of the tree
Back of the array

2. Traverse the tree from bottom to top
Reverse order in the array

3. Percolate Down each level moving towards overall root

CSE 373 SP 18 - KASEY CHAMPION

7

Floyd’s buildHeap algorithm

Build a tree with the values:
12,5,11,3,10,2,9,4,8,1,7,6

12

1. Add all values to back of array 5

11
2. percolateDown(parent) starting at last index

12 5 11 | 3 10 | 2 9 4 3 1 7 6

f CSE 373 SP 18 - KASEY CHAMPION

Floyd’s buildHeap algorithm

Build a tree with the values:
12,5,11,3,10,2,9,4,8,1,7,6

1. Add all values to back of array 3 11
2. percolateDown(parent) starting at last index |
1. percolateDown level 4
2. percolateDown level 3

3. percolateDown level 2 5 7 11
4. percolateDown level 1 |

12 5 11 | 3 10 | 2 9 4 3 1 7 6

f CSE 373 SP 18 - KASEY CHAMPION

Floyd’s Heap Runtime

We step through each node — n
We call percolateDown() on each n—log n
thus it’s O(nlogn)

... let’s look closer...

Are we sure percolateDown() runs log n each time?
Half the nodes of the tree are leaves

Leaves run percolate down in constant time
% the nodes have at most 1 level to travel
1/8 the nodes have at most 2 levels to travel
etc...

work(n)=n/2*1+n/4*2+n/8* 3+ ..

CSE 373 SP 18 - KASEY CHAMPION

10

Closed form Floyd’s buildHeap

n n n
work(n)z5*1+z*2+§*3+...

factor out n

_ 1 2 3 :
work(n) = n(%+%+§+ ..) find a pattern -> powers of 2 work(n) = n(;+2—2+§+ .. Summation!
7,
i
work(n) = nz > ? = how many levels = height of tree = log(n)
i=1
Infinite geometric series
logn | oo 1 logn | ©
i . [[
work(n)znZ? if—1<x<1thenZ)x‘=1_x:x Work(n)znZ?SnZO?:n*Z
1= = 1= 1=

Floyd’s buildHeap runs in O(n) time!

CSE 373 SP 18 - KASEY CHAMPION

11

Sorting

CSE 373 SP 18 - KASEY CHAMPION 12

Types of Sorts

Comparison Sorts

Compare two elements at a time

General sort, works for most types of elements
Element must form a “consistent, total ordering”

For every element a, b and c in the list the
following must be true:

Ifa<=bandb<=athena=>b
Ifa<=bandb<=cthena<=c
Either a <= b is true or<=a

What does this mean? compareTo() works for your
elements

Comparison sorts run at fastest O(nlog(n)) time

Niche Sorts aka “linear sorts”

Leverages specific properties about the
items in the list to achieve faster
runtimes

niche sorts typically run O(n) time

In this class we’ll focus on comparison
sorts

CSE 373 SP 18 - KASEY CHAMPION

13

Sort Approaches

In Place sort
A sorting algorithm is in-place if it requires only O(1) extra space to sort the array
Typically modifies the input collection

Useful to minimize memory usage

Stable sort

A sorting algorithm is stable if any equal items remain in the same relative order before
and after the sort

Why do we care?
Sometimes we want to sort based on some, but not all attributes of an item

Items that “compareTo()” the same might not be exact duplicates

Enables us to sort on one attribute first then another etc...

[(8, “fox”), (9, “dog”), (4, “wolf”), (8, “cow”)]

[(4, “wolf”), (8, “fox”), (8, “cow”), (9, “dog”)]| Stable

[(4, “wolf”), (8, “cow”), (8, “fox”), (9, “dog”)]| Unstable

CSE 373 SP 18 - KASEY CHAMPION 14

SO MANY SORTS

Quicksort, Merge sort, in-place merge sort, heap sort, insertion
sort, intro sort, selection sort, timsort, cubesort, shell sort,
bubble sort, binary tree sort, cycle sort, library sort, patience
sorting, smoothsort, strand sort, tournament sort, cocktail sort,
comb sort, gnome sort, block sort, stackoverflow sort, odd-even
sort, pigeonhole sort, bucket sort, counting sort, radix sort,
spreadsort, burstsort, flashsort, postman sort, bead sort, simple
pancake sort, spaghetti sort, sorting network, bitonic sort,
bogosort, stooge sort, insertion sort, slow sort, rainbow sort...

CSE 373 SP 18 - KASEY CHAMPION

15

https://www.youtube.com/watch?v=R0alU379I3U

Insertion Sort

2 3 6 7 5 1 4 10 2 8
J \)
| |
Sorted Items Unsorted Items

Current Iltem

J \ J
| |
Sorted Items Unsorted Items

Current Iltem

2 3 5 6 7 8 4 10 2 8
\ J \ J
| |
Sorted Items Unsorted Items

Current Item

https://www.youtube.com/watch?v=ROalU379l3U

Insertion Sort

|
Sorted Items

public void insertionSort (collection) {
for (entire list)
if (currentItem is bigger than nextItem)

int newIndex = findSpot (currentlItem);

shift (newIndex, currentlItem);
}
public int findSpot (currentItem) {
for (sorted list)
if (spot found) return
}

public void shift (newIndex, currentItem) {

for (i = currentItem > newlIndex)
item[i+1l] = item[1i]
item[newIndex] = currentlItem

|

Unsorted Items
Current ltem

Worst case runtime? O(n?)

Best case runtime? O(n)
Average runtime? 0(n?)
Stable? Yes
In-place? Yes

CSE 373 SP 18 - KASEY CHAMPION

17

https://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort -
y— —

2 3 6 7 18 10 14 9 11 15
\ J \)
| |
Sorted Items Unsorted Items

Current Iltem

2 3 6 7 9 10 14 18 11 15

\ J \ J
, 1 ,

Sorted Items Unsorted Items
Current ltem

2 3 6 7 9 10 18 14 11 15
\ J \ J
| |
Sorted Items Unsorted Items

Current Item

https://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort

P

N

2 3 6 7 18 10 14 9 11 15
\ J J
| |
Sorted Items Current Iltem Unsorted Items

public void selectionSort (collection) {
for (entire list)

int newIndex = findNextMin (currentItem) ;

swap (newIndex, currentItem);
}
public int findNextMin (currentItem) {
min = currentItem
(unsorted 1list)
if (item < min)
min = currentItem
return min

for

}

public int swap (newIndex, currentItem) {
temp = currentltem
currentItem = newlIndex
newlndex = currentlItem

Worst case runtime?
Best case runtime?
Average runtime?
Stable?

In-place?

O(n?)
O(n?)
O(n?)
Yes

Yes

CSE 373 SP 18 - KASEY CHAMPION

19

Heap Sort

1. run Floyd’s buildHeap on your data

2. call removeMin n times

https://www.youtube.com/watch?v=Xw2D9aJRBY4

public void heapSort(collection) {
E[] heap = buildHeap (collection)

E[] output = new E[n]
for (n)
output[i] = removeMin (heap)

Worst case runtime?
Best case runtime?
Average runtime?
Stable?

In-place?

O(nlogn)
O(nlogn)
O(nlogn)
No

No

CSE 373 SP 18 - KASEY CHAMPION

20

https://www.youtube.com/watch?v=Xw2D9aJRBY4

In PIW \

1 4 2 14 15 18 16 17 20 22
\ |
]

Heap Sorted ltems
Current ltem

22 4 2 14 15 18 16 17 20 1
L4 - A v ;
|_| percolateBewn(22) " Heap Sorted Items
Currew
2 4 16 14 15 18 22 17 20 1
\ A)
| |
Heap Sorted ltems

Current ltem
CSE 373 SP 18 - KASEY CHAMPION 21

In Place Heap Sort

15 17 16 18

20

22 14 4 2 1

Heap
Current Item

public void inPlaceHeapSort (collection) {
E[] heap = buildHeap (collection)
for (n)
output[n - i - 1] = removeMin (heap)

Complication: final array is reversed!
- Run reverse afterwards (O(n))
- Use a max heap

- Reverse compare function to emulate max heap

|
Sorted Items

Worst case runtime? O(nlogn)

Best case runtime? O(nlogn)
Average runtime? O(nlogn)
Stable? No
In-place? Yes

CSE 373 SP 18 - KASEY CHAMPION

22

Divide and Conquer Technique

1. Divide your work into smaller pieces recursively
Pieces should be smaller versions of the larger problem

2. Conquer the individual pieces
Base case!

3. Combine the results back up recursively

divideAndConquer (input) {
if (small enough to solve)
conquer, solve, return results
else
divide input into a smaller pieces
recurse on smaller piece
combine results and return

CSE 373 SP 18 - KASEY CHAMPION 23

Merge Sort

https://www.youtube.com/watch?v=XagR3G NVoo

Divide
91 22 57 10 6 7 4
8 91 22 57 1 10 4
Conquer
Combine
2 22 57 91 1 4 10
4 6 7 10 22 57 91

CSE 373 SP 18 - KASEY CHAMPION

24

https://www.youtube.com/watch?v=XaqR3G_NVoo

Merge Sort s | 2 | s | e | 2

8 2 57 91 22
mergeSort (input) {
if (input.length == 1)
return
else 8 2 57 91 22
smallerHalf = mergeSort (new [0, ..., mid])
largerHalf = mergeSort(new [mid + 1, ...])
return merge(smallerHalf, largerHalf)
} 91 22
Worst case runtime?
22 91
lifn<=1
Best case runtime? T(n) = ,
(n) {ZT(n/Z) + n otherwise
Average runtime? 2 8 22 57 91
Stable? No
2 2 22 57 91
In-place? No

CSE 373 SP 18 - KASEY CHAMPION 25

