
B-Tree Insertions, Intro to
Heaps Data Structures and Algorithms

CSE 373 SP 18 - KASEY CHAMPION

1

Warm Up
What operations would occur in what order if a call of get(24) was called on this b-tree?

What is the M for this tree? What is the L?

If Binary Search is used to find which child to follow from an internal node, what is the runtime
for this get operation?

CSE 373 SP 18 - KASEY CHAMPION 2

6 4

8 5

9 6

10 7

12 8

14 9

16 10

17 11

20 12

22 13

24 14

34 18

38 19

39 20

41 21

12

27 15

28 16

32 17

6 20 27 34

1 1

2 2

3 3

Administrivia
1. Midterm grades will be published by Friday

2. HW #4 is due Friday

3. 1 partner must fill out partner form by Friday

4. HW Grade Review Requests coming next week

CSE 373 SP 18 - KASEY CHAMPION 3

Review: B-Trees

Has 3 invariants that define it

1. B-trees must have two different types of nodes: internal nodes and leaf nodes
- An internal node contains M pointers to children and M – 1 sorted keys.
- M must be greater than 2
- Leaf Node contains L key-value pairs, sorted by key.

2. B-trees order invariant
- For any given key k, all subtrees to the left may only contain keys that satisfy x < k
- All subtrees to the right may only contain keys x that satisfy k >= x

3. B-trees structure invariant
- If n<= L, the root is a leaf
- If n >= L, root node must be an internal node containing 2 to M children
- All nodes must be at least half-full

CSE 373 SP 18 - KASEY CHAMPION 4

Put() for B-Trees

Build a new b-tree where M = 3 and L = 3.

Insert (3,1), (18,2), (14,3), (30,4) where (k,v)

When n <= L b-tree root is a leaf node

No space for (30,4) ->split the node

Create two new leafs that each hold ½ the values and create a new internal node

CSE 373 SP 18 - KASEY CHAMPION 5

3 1

18 2

14 3wrong ->

18

3 1

14 3

18 2

30 4

<- use smallest value in larger subset as sign post
2. B-trees order invariant

For any given key k, all subtrees to the
left may only contain keys that satisfy x <
k
All subtrees to the right may only contain
keys x that satisfy k >= x

You try!
Try inserting (32, 5) and (36, 6) into the following tree

CSE 373 SP 18 - KASEY CHAMPION 6

18

3 1

14 3

18 2

30 4

32 5

32 5

36 6

32

Splitting internal nodes
Try inserting (15, 7) and (16, 8) into our existing tree

CSE 373 SP 18 - KASEY CHAMPION 7

18

3 1

14 3

18 2

30 4

32 5

36 6

32

15 7

15 7

16 8

32

3 1

14 3

18 2

30 4

32 5

36 6

15

15 7

16 8

Make a new internal node!

Make a new internal node!
18

B-tree Run Time
Time to find correct leaf

Time to insert into leaf

Time to split leaf

Time to split leaf’s parent internal node

Number of internal nodes we might have to split

All up worst case runtime:

CSE 373 SP 18 - KASEY CHAMPION 8

Height = logm(n)log2(m) = tree traversal time

Θ(L)

Θ(L)

Θ(M)

Θ(logm(n))

Θ(L + Mlogm(n))

New Topic: Heaps

CSE 373 SP 18 - KASEY CHAMPION 9

Priority Queue ADT

CSE 373 SP 18 - KASEY CHAMPION 10

Min Priority Queue ADT

removeMin() – returns the element with the smallest

priority, removes it from the collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not remove the element with

the smallest priority

insert(value) – add a new element to the collection

Max Priority Queue ADT

removeMax() – returns the element with the largest

priority, removes it from the collection

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMax() – find, but do not remove the element with

the largest priority

insert(value) – add a new element to the collection

Imagine you have a collection of data from which you will always ask for the extreme value

Implementing Priority Queue

Idea Description removeMin() runtime peekMin() runtime insert() runtime

Unsorted ArrayList Linear collection of values, stored in an Array,
in order of insertion O(n) O(n) O(1)

Unsorted LinkedList Linear collection of values, stored in Nodes, in
order of insertion O(n) O(n) O(1)

Sorted ArrayList Linear collection of values, stored in an Array,
priority order maintained as items are added O(1) O(1) O(n)

Sorted Linked List Linear collection of values, stored in Nodes,
priority order maintained as items are added O(1) O(1) O(n)

Binary Search Tree Hierarchical collection of values, stored in
Nodes, priority order maintained as items are
added

O(n) O(n) O(n)

AVL tree Balanced hierarchical collection of values,
stored in Nodes, priority order maintained as
items are added

O(logn) O(logn) O(logn)

CSE 373 SP 18 - KASEY CHAMPION 11

Let’s start with an AVL tree
What is the worst case for peekMin()?

What is the best case for peekMin()?

Can we do something to guarantee best case for these two
operations?

CSE 373 SP 18 - KASEY CHAMPION 12

AVLPriorityQueue<E>

removeMin() – traverse
through tree all the way to
the left, remove node,
rebalance if necessary

state

behavior

overallRoot

peekMin() – traverse through
tree all the way to the left

insert() – traverse through
tree, insert node in open
space, rebalance as
necessary

O(logn)

O(1)

Binary Heap
A type of tree with new set of invariants

1. Binary Tree: every node has at most 2
children

2. Heap: every node is smaller than its child

CSE 373 SP 18 - KASEY CHAMPION 13

8

9 10 2

4 5

3

6 7

1

3. Structure: Each level is “complete” meaning it
has no “gaps”
- Heaps are filled up left to right

22

36 47

2

4

8 9 10

3

1

5

Self Check - Are these valid heaps?

CSE 373 SP 18 - KASEY CHAMPION 14

Binary Heap Invariants:
1. Binary Tree
2. Heap
3. Complete

2

3

5

7 8

4

9 11 10

5

9 8

6

7

4

3

7

1

6

INVALID INVALID VALID

Implementing peekMin()

CSE 373 SP 18 - KASEY CHAMPION 15

4

5 8

7

10

2

9

11 13

Implementing removeMin()

CSE 373 SP 18 - KASEY CHAMPION 16

4

5 8

7

10

2

9

11 13

Removing overallRoot creates a gap
Replacing with one of its children causes
lots of gaps
What node can we replace with
overallRoot that wont cause any gaps?

4

5 8

7

10

13

9

11

Structure maintained, heap broken

Fixing Heap – percolate down
Recursively swap parent with smallest child

CSE 373 SP 18 - KASEY CHAMPION 17

4

5 8

7

10

13

9

11

4

135

13

13

11

percolateDoen(node) {
while (node.data is bigger than its children) {

swap data with smaller child
}

}

Self Check – removeMin() on this tree

CSE 373 SP 18 - KASEY CHAMPION 18

10

17 14

9

11

5

13

20 2216 15 2419 18

18

18

9

18

11

Implementing insert()
Insert a node to ensure no gaps
Fix heap invariant

percolate UP

CSE 373 SP 18 - KASEY CHAMPION 19

4

5 8

7

10

2

9

11 13 3

3

7

3

4

