

CSE 373 SP 18 - KASEY CHAMPION

B-Tree Insertions, Intro to Heaps

Data Structures and Algorithms

Warm Up

What operations would occur in what order if a call of get(24) was called on this b-tree?

What is the M for this tree? What is the L?

If Binary Search is used to find which child to follow from an internal node, what is the runtime for this get operation?

Administrivia

- 1. Midterm grades will be published by Friday
- 2. HW #4 is due Friday
- 3. 1 partner must fill out partner form by Friday
- 4. HW Grade Review Requests coming next week

Review: B-Trees

Has 3 invariants that define it

- 1. B-trees must have two different types of nodes: internal nodes and leaf nodes
- An internal node contains M pointers to children and M 1 sorted keys.
- M must be greater than 2
- Leaf Node contains L key-value pairs, sorted by key.

2. B-trees order invariant

- For any given key k, all subtrees to the left may only contain keys that satisfy x < k
- All subtrees to the right may only contain keys x that satisfy k >= x

3. B-trees structure invariant

- If n<= L, the root is a leaf
- If n >= L, root node must be an internal node containing 2 to M children
- All nodes must be at least half-full

Put() for B-Trees

Build a new b-tree where M = 3 and L = 3.

Insert (3,1), (18,2), (14,3), (30,4) where (k,v)

When n <= L b-tree root is a leaf node

No space for (30,4) ->**split** the node

Create two new leafs that each hold ½ the values and create a new internal node

5

You try!

Try inserting (32, 5) and (36, 6) into the following tree

Splitting internal nodes

Try inserting (15, 7) and (16, 8) into our existing tree

B-tree Run Time

Time to find correct leaf $Height = log_m(n)log_2(m) = tree traversal time$

Time to insert into leaf O(L)

Time to split leaf O(L)

Time to split leaf's parent internal node O(M)

Number of internal nodes we might have to split $O(log_m(n))$

All up worst case runtime: $O(L + Mlog_m(n))$

Priority Queue ADT

Imagine you have a collection of data from which you will always ask for the extreme value

Min Priority Queue ADT

state

Set of comparable values

- Ordered based on "priority"

behavior

removeMin() – returns the element with the <u>smallest</u> priority, removes it from the collection

peekMin() - find, but do not remove the element with
the smallest priority

insert(value) – add a new element to the collection

Max Priority Queue ADT

state

Set of comparable values

- Ordered based on "priority"

behavior

removeMax() – returns the element with the <u>largest</u> priority, removes it from the collection

peekMax() - find, but do not remove the element with
the largest priority

insert(value) – add a new element to the collection

Implementing Priority Queue

Idea	Description	removeMin() runtime	peekMin() runtime	insert() runtime
Unsorted ArrayList	Linear collection of values, stored in an Array, in order of insertion	O(n)	O(n)	O(1)
Unsorted LinkedList	Linear collection of values, stored in Nodes, in order of insertion	O(n)	O(n)	O(1)
Sorted ArrayList	Linear collection of values, stored in an Array, priority order maintained as items are added	O(1)	O(1)	O(n)
Sorted Linked List	Linear collection of values, stored in Nodes, priority order maintained as items are added	O(1)	O(1)	O(n)
Binary Search Tree	Hierarchical collection of values, stored in Nodes, priority order maintained as items are added	O(n)	O(n)	O(n)
AVL tree	Balanced hierarchical collection of values, stored in Nodes, priority order maintained as items are added	O(logn)	O(logn)	O(logn)

Let's start with an AVL tree

AVLPriorityQueue<E>

state

overallRoot

behavior

removeMin() - traverse
through tree all the way to
the left, remove node,
rebalance if necessary

peekMin() - traverse through
tree all the way to the left

insert() - traverse through
tree, insert node in open
space, rebalance as
necessary

What is the worst case for peekMin()? O(logn)

What is the best case for peekMin()? **O(1)**

Can we do something to guarantee best case for these two operations?

Binary Heap

A type of tree with new set of invariants

- **1. Binary Tree**: every node has at most 2 children
- 2. Heap: every node is smaller than its child

Self Check - Are these valid heaps?

Binary Heap Invariants:

6

- 1. Binary Tree
- 2. Heap
- 3. Complete

Implementing peekMin()

Implementing removeMin()

Removing overallRoot creates a gap Replacing with one of its children causes lots of gaps What node can we replace with

overallRoot that wont cause any gaps?

Structure maintained, heap broken

Fixing Heap – percolate down

Recursively swap parent with smallest child

percolateDoen(node) while (node.data is bigger than its children) { swap data with smaller child

Self Check – removeMin() on this tree

Implementing insert()

Insert a node to ensure no gaps

Fix heap invariant

percolate **UP**

