
Computer Memory Data Structures and Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1



Warm Up
public int sum1(int n, int m, int[][] table) {

int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[i][j];

}
}
return output;

}

CSE 373 SP 18 - KASEY CHAMPION 2

public int sum2(int n, int m, int[][] table) {
int output = 0;
for (int i = 0; i < m; i++) {

for (int j = 0; j < n; j++) {
output += table[j][i];

}
}
return output;

}

What do these two methods do?
What is the big-Θ
Θ(n*m)



Warm Up

CSE 373 SP 18 - KASEY CHAMPION 3



Incorrect Assumptions
Accessing memory is a quick and constant-time operation

Sometimes accessing memory is cheaper and easier than at other times

Sometimes accessing memory is very slow

CSE 373 SP 18 - KASEY CHAMPION 4

Lies!



Memory Architecture

CSE 373 SP 18 - KASEY CHAMPION 5

CPU Register

L1 Cache

L2 Cache

RAM

Disk

What is it? Typical Size Time

The brain of the computer! 32 bits ≈free

Extra memory to make 

accessing it faster
128KB 0.5 ns

Extra memory to make 

accessing it faster
2MB 7 ns

Working memory, what 

your programs need
8GB 100 ns

Large, longtime storage 1 TB 8,000,000 ns



Review: Binary, Bits and Bytes
binary
A base-2 system of representing numbers using only 1s and 0s

- vs decimal, base 10, which has 9 symbols

bit
The smallest unit of computer memory represented as a single binary value either 0 or 1

CSE 373 SP 18 - KASEY CHAMPION 6

Decimal Decimal Break Down Binary Binary Break Down

0 (0 ∗ 10%) 0 (0 ∗ 2%)
1 (1 ∗ 10%) 1 (1 ∗ 2%)

10 (1 ∗ 10() + (0 ∗ 10%) 1010 (1 ∗ 2*) + (0 ∗ 2+) + (1 ∗ 2()
+ (0 ∗ 2%)

12 (1 ∗ 10() + (2 ∗ 10%) 1100 (1 ∗ 2*) + (1 ∗ 2+) + (0 ∗ 2()
+ (0 ∗ 2%)

127 1 ∗ 10+ + (1 ∗ 10()
+ (2 ∗ 10%)

011111
11

(0 ∗ 2,) + (1 ∗ 2-) + (1 ∗ 2.)
+ (1 ∗ 2/)(1 ∗ 2*) + (1 ∗ 2+)
+ (1 ∗ 2() + (1 ∗ 2%)

byte
The most commonly referred to unit of memory, a 
grouping of 8 bits
Can represent 265 different numbers (28) 
1 Kilobyte = 1 thousand bytes (kb)
1 Megabyte = 1 million bytes (mb)
1 Gigabyte = 1 billion bytes (gb)



Memory Architecture
Takeaways:

- the more memory a layer can store, the slower it is (generally)

- accessing the disk is very slow

Computer Design Decisions

-Physics
- Speed of light
- Physical closeness to CPU

-Cost
- “good enough” to achieve speed
- Balance between speed and space

CSE 373 SP 18 - KASEY CHAMPION 7



Locality
How does the OS minimize disk accesses?

Spatial Locality

Computers try to partition memory you are likely to use close by

- Arrays

- Fields

Temporal Locality

Computers assume the memory you have just accessed you will likely access again in the near 
future

CSE 373 SP 18 - KASEY CHAMPION 8



Leveraging Spatial Locality

When looking up address in “slow layer” 

- bring in more than you need based on what’s near by

- cost of bringing 1 byte vs several bytes is the same

- Data Carpool!

CSE 373 SP 18 - KASEY CHAMPION 9



Leveraging Temporal Locality
When looking up address in “slow layer” 

Once we load something into RAM or cache, keep it around or a while

- But these layers are smaller
- When do we “evict” memory to make room?

CSE 373 SP 18 - KASEY CHAMPION 10



Moving Memory
Amount of memory moved from disk to RAM
- Called a “block” or “page”
- ≈4kb
- Smallest unit of data on disk

Amount of memory moved from RAM to Cache
- called a “cache line”
- ≈64 bytes

Operating System is the Memory Boss

- controls page and cache line size

- decides when to move data to cache or evict

CSE 373 SP 18 - KASEY CHAMPION 11



Warm Up
public int sum1(int n, int m, int[][] table) {

int output = 0;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
output += table[i][j];

}
}
return output;

}

CSE 373 SP 18 - KASEY CHAMPION 12

public int sum2(int n, int m, int[][] table) {
int output = 0;
for (int i = 0; i < m; i++) {

for (int j = 0; j < n; j++) {
output += table[j][i];

}
}
return output;

}

Why does sum1 run so much faster than sum2?
sum1 takes advantage of spatial and temporal locality

0 1 2 3 4

0 1 2

‘a’ ‘b’ ‘c’

0 1 2

‘d’ ‘e’ ‘f’

0 1 2

‘g’ ‘h’ ‘i’

0 1 2

‘j’ ‘k’ ‘l’

0 1 2

‘m’ ‘n’ ‘o’



Java and Memory
What happens when you use the “new” 
keyword in Java?

- Your program asks the Java Virtual 
Machine for more memory from the 
“heap”
- Pile of recently used memory

- If necessary the JVM asks Operating 
System for more memory
- Hardware can only allocate in units of page
- If you want 100 bytes you get 4kb
- Each page is contiguous

CSE 373 SP 18 - KASEY CHAMPION 13

What happens when you create a new array?
- Program asks JVM for one long, contiguous chunk of memory

What happens when you create a new object?
- Program asks the JVM for any random place in memory

What happens when you read an array index?
- Program asks JVM for the address, JVM hands off to OS
- OS checks the L1 caches, the L2 caches then RAM then disk 

to find it
- If data is found, OS loads it into caches to speed up future 

lookups

What happens when we open and read data from a 
file?

- Files are always stored on disk, must make a disk access



Array v Linked List
Is iterating over an ArrayList faster than iterating over a LinkedList?

Answer:

LinkedList nodes can be stored in memory, which means the don’t have spatial locality. The 
ArrayList is more likely to be stored in contiguous regions of memory, so it should be quicker to 
access based on how the OS will load the data into our different memory layers.

CSE 373 SP 18 - KASEY CHAMPION 14


