
Implementing Hash and
AVL

Data Structures and

Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1

Warm Up

CSE 373 SP 18 - KASEY CHAMPION 2

Announcements

1. Go look at your HW 1 scores, seems a lot are missing

2. Look at your HW 2 scores
- If you got 0/5 for check style, you can get those points back

- If you got 0/12 for delete tests, your tests didn’t pass on working input

- Regrade policy: when resubmitted you can earn up to ½ missed points back

3. Must use same partners for part 2 of project
- Can pick new partners for next project

- EXTREMELY HIGH overlap between those working alone and late submitted projects

4. Kasey is presenting the “No BS CS Career Talk” for 14X on Thursday April 19th 4:30-5:20 in
Gug 220
- It’s a good time, come hang out

CSE 373 SP 18 - KASEY CHAMPION 3

Coming Up

Monday Wednesday Thursday Friday

4/16

Lecture: Open Addressing

in Hash Tables

4/18

Lecture: Implementing

AVL Trees and Hash Tables

4/19

Section: AVL Trees and

Hash Tables

4/20

Lecture: How Memory

Works

HW2 PT2 due

HW3: Midterm Review

assigned

4/23

Lecture: B-Trees

4/25

Lecture: Midterm Review

4/26

Section: Midterm Review

4/27

Midterm

HW3: Midterm Review

due

CSE 373 SP 18 - KASEY CHAMPION 4

TA Lead Review Session: TBA

What’s going to be on the Midterm?

ADTs and data structures

- Difference between an ADT and a data structure.

- Stacks, queues, lists, dictionaries: common
implementations, runtimes, and when to use them.

- Iterators: what they are, how to implement basic ones
(e.g. for array lists and linked lists).

Asymptotic analysis

- Big-O, Big-Omega, and Big-Theta.

- Finding c and n0 to show that one function is in Big-O,
Big-Omega, or Big-Theta of another

- Modeling runtime of a piece of code as a function
possibly including a summation or a recurrence.

- Understand the difference between best-case,
average-case, and worst-case runtime.

Trees

- How to implement and manipulate trees including
Binary Search and AVL types

- Runtimes for tree operations.

- Performing AVL rotations when inserting values

CSE 373 SP 18 - KASEY CHAMPION 5

Hash tables

- Closed vs open addressing.

- Collision resolution: separate chaining, linear probing,

quadratic probing, double hashing.

- Basics of good hash function design.

- Load factor.

- Runtimes (best, average, and worst-case).

Testing

- How to construct different test cases

- Reading and evaluating code to debug

NOT on the exam

- Java generics and Java interfaces

- JUnit

- Java syntax

- Finding the closed form of summations and recurrences

Implementing a Dictionary

CSE 373 SP 18 - KASEY CHAMPION 6

HashMap<K, V>

put() pair into array

based on hash

- Resize when appropriate

- Pair<K, V>[]

- LinkedList<E>[]

size

state

behavior

Data[]

get() value from array index

based given key’s hash

set() update value in pair

for given key’s hash to

array index

remove() take data out

of array

Dictionary ADT

Add pair to collection

Count of data pairs

state

behavior

Set of Key, Value pairs
- Keys must be unique!

- No required order

Get value for given key

Change value for given key

Remove data pair from

collection

TreeMap<K, V>

put() add node for new

pair in correct location

- Balance when appropriate

state

behavior

overallRoot<K,V>

get() value based on node

location in tree

set() update value in pair

for given key

remove() delete given node

- replace with appropriate

existing node

public interface Dictionary {

void put(key, value)

unspecified

state

behavior

value get(key)

void set(key, value)

void remove(key)

Implementing Hash Map

CSE 373 SP 18 - KASEY CHAMPION 7

LinkedList<E>

Add() add a new node that

stores Key and Value to list

ListNode<K, V> front

state

behavior

get() return value from node

with given key

remove() deletes node with

given key from list

set() changes value in

node with given key

Contains() is the given key

stored in list

iterator() returns an

iterator to move over list

ListNode<K, V>

Construct a new Node

ListNode<K, V> next

state

behavior

K key

V value

HashMap<K, V>

put() pair into array

based on hash

- Resize when appropriate

LinkedList<E>[]

size

state

behavior

get() value from array index

based given key’s hash

set() update value in pair

for given key’s hash to

array index

remove() take data out

of array

Implementing a Hash Map

CSE 373 SP 18 - KASEY CHAMPION 8

LinkedList<E>

void add(key, value)

ListNode<K, V> front

state

behavior

value get(key)

void remove(key)

void set(key, value)

boolean contains(key)

iterator<E> iterator()

ListNode<K, V>

Construct a new Node

ListNode<K, V> next

state

behavior

K key

V value
void put(k key, v value) {

create new Node

bucketAddress = get hash for key % table size

bucketList = data[bucketAddress]

loop(bucketList)

if (this node’s key is what I am trying to add)

replace this node with new pair

stop work

if (load factor is about 1)

increase array capacity to next prime number

rehash existing values into new array

add node to bucket

update size

}

HashMap<K, V>

LinkedList<E>[]

size

state

behavior
void put(key, value)

value get(key)

void set(key, value)

void remove(key)

v get(k key) {

bucketAddress = get hash for key % table size

bucketList = data[bucketAddress]

loop (bucketList) {

if (this node’s key is what I am looking for)

return this node’s value

}

return not found :(

}

Implementing Tree Map

CSE 373 SP 18 - KASEY CHAMPION 9

TreeMap<K, V>

put() add node for new

pair in correct location

- Balance when appropriate

state

behavior

overallRoot<K,V>

get() value based on node

location in tree

set() update value in pair

for given key

remove() delete given node

- replace with appropriate

existing node

ListNode<K, V>

Construct a new Node

ListNode<K, V> left

state

behavior

K key

V value

ListNode<K, V> right

int height

Implementing Tree Map

CSE 373 SP 18 - KASEY CHAMPION 10

TreeMap<K, V>

state

behavior

overallRoot<K,V>

ListNode<K, V>

Construct a new Node

ListNode<K, V> left

state

behavior

K key

V value

ListNode<K, V> right

int height

v get(k key) {

start at top of tree

}

ListNode<K, V> getHelper(key, Node) {

if(node is null)

data isn’t in collection

if data at current node > what I’m looking for

go left

if data at current node < what I’m looking for

go right

else

found it!

}

void put(key, value)

value get(key)

void set(key, value)

void remove(key)

