Algorithm Analysis and Modeling
Warm Up

From Last Lecture:
Imagine you have implemented a Map with the following functions:
- put(key, value)
- get(key)
- size()
What are some test cases you would use to check it works?

Socrative:
www.socrative.com
Room Name: CSE373
Please enter your name as: Last, First
Administrivia

Due dates:
- Partner form Thursday April 5th at 1:59pm
- Homework #1 Friday April 6th at 11:59pm
- Class Survey Friday April 6th at 11:59pm

Notes:
- Sign up for piazza!
- Set up your development environment
- Project 1 to go out Friday
Asymptotic Analysis

asymptotic analysis: how the runtime of an algorithm grows as the data set grows

Approximations
- Basic operations take “constant” time
 - Assigning a variable
 - Accessing a field or array index
- Consecutive statements
 - Some of time for each statement
- Function calls
 - Time of function’s body
- Conditionals
 - Time of condition + maximum time of branch code
- Loops
 - Number of iterations x time for loop body
Modeling Case Study

Goal: return ‘true’ if a sorted array of ints contains duplicates

Solution 1: compare each pair of elements

```java
public boolean hasDuplicate1(int[] array) {
    for (int i = 0; i < array.length; i++) {
        for (int j = 0; j < array.length; j++) {
            if (i != j && array[i] == array[j]) {
                return true;
            }
        }
    }
    return false;
}
```

Solution 2: compare each consecutive pair of elements

```java
public boolean hasDuplicate2(int[] array) {
    for (int i = 0; i < array.length - 1; i++) {
        if (array[i] == array[i + 1]) {
            return true;
        }
    }
    return false;
}
```
Modeling Case Study: Solution 2

T(n) where n = array.length

-> work inside out

Solution 2: compare each consecutive pair of elements

```java
public boolean hasDuplicate2(int[] array) {
    for (int i = 0; i < array.length - 1; i++) {
        if (array[i] == array[i + 1]) {
            return true; +1
        }
    }
    return false; +1
}

T(n) = 5 (n-1) + 1
linear time complexity class O(n)
Modeling Case Study: Solution 1

Solution 1: compare each consecutive pair of elements

```java
public boolean hasDuplicate1(int[] array) {
 for (int i = 0; i < array.length; i++) {
 for (int j = 0; j < array.length; j++) {
 if (i != j && array[i] == array[j]) {
 return true; \+ 1
 }
 }
 }
 return false; \+ 1
}
```

\[ T(n) = 6 \, n^2 + 1 \]

quadratic time complexity class \( O(n^2) \)
Comparing Functions
Function growth

- $n$ and $4n$ look very different up close
- $n^2$ eventually dominates $n$
- $n^2$ doesn’t start off dominating the linear functions
  It eventually takes over
Function comparison: exercise

f(n) = n ≤ g(n) = 5n + 3? **True** – all linear functions are treated as equivalent
f(n) = 5n + 3 ≤ g(n) = n? **True**
f(n) = 5n + 3 ≤ g(n) = 1? **False**
f(n) = 5n + 3 ≤ g(n) = n²? **True** – quadratic will always dominate linear
f(n) = n² + 3n + 2 ≤ g(n) = n³? **True**
f(n) = n³ ≤ g(n) = n² + 3n + 2? **False**
**Definition: function domination**

A function $f(n)$ is *dominated* by $g(n)$ when...

There exists two constants $c > 0$ and $n_0 > 0$

Such that for all values of $n \geq n_0$

$f(n) \leq c \cdot g(n)$

**Example:**

Is $f(n) = n$ dominated by $g(n) = 5n + 3$?

$c = 1$

$n_0 = 1$

Yes!
Exercise: Function Domination

Demonstrate that $5n^2 + 3n + 6$ is dominated by $n^3$ by finding a $c$ and $n_0$ that satisfy the definition of domination

$5n^2 + 3n + 6 \leq 5n^2 + 3n^2 + 6n^2$ when $n \geq 1$

$5n^2 + 3n^2 + 6n^2 = 14n^2$

$5n^2 + 3n + 6 \leq 14n^2$ for $n \geq 1$

$14n^2 \leq c*n^3$ for $c = ?$ $n \geq ?$

$\frac{14}{n} \rightarrow c = 14 & n \geq 1$
**Definition: Big O**

If \( f(n) = n \leq g(n) = 5n + 3 \leq h(n) = 100n \) and

\( h(n) = 100n \leq g(n) = 5n + 3 \leq f(n) \)

Really they are all the “same”

**Definition: Big O**

\( O(f(n)) \) is the “family” or “set” of all functions that are dominated by \( f(n) \)

Question: are \( O(n) \), \( O(5n + 3) \) and \( O(100n) \) all the same?

True! By convention we pick simplest of the above -> \( O(n) \) ie “linear”
Definitions: Big $\Omega$

“$f(n)$ is greater than or equal to $g(n)$”

$F(n)$ dominates $g(n)$ when:

There exists two constants such that $c > 0$ and $n_0 > 0$

Such that for all values $n >= n_0$

$F(n) >= c * g(n)$ is true

Definition: Big $\Omega$

$\Omega(f(n))$ is the family of all functions that dominates $f(n)$
$f(n)$ is dominated by $g(n)$

Is that the same as

“$f(n)$ is contained inside $O(g(n))$”

Yes!

$f(n) \in g(n)$
Examples

- $4n^2 \in \Omega(1)$, true
- $4n^2 \in \Omega(n)$, false
- $4n^2 \in \Omega(n^2)$, true
- $4n^2 \in \Omega(n^3)$, false
- $4n^2 \in \Omega(n^4)$, false

**Definition: Big O**

$O(f(n))$ is the “family” or “set” of all functions that are dominated by $f(n)$

**Definition: Big Omega**

$\Omega(f(n))$ is the family of all functions that dominates $f(n)$
Definitions: Big $\Theta$

We say $f(n) \in \Theta(g(n))$ when both

$f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$ are true

Which is only when $f(n) = g(n)$

$\Theta(f(n))$ is the family of functions that are equivalent to $f(n)$

Industry uses “Big $\Theta$” and “Big $O$” interchangeably