
Lecture 2: Implementing
ADTs

Data Structures and

Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1

Warm Up – Discuss with your neighbors!

From last lecture:
- What is an ADT?

- What is a data structure?

From CSE 143:

- What is a “linked list” and what operations is it best at?

- What is a “stack” and what operations is it best at?

- What is a “queue” and what operations is it best at?

Socrative:
www.socrative.com

Room Name: CSE373

Please enter your name as: Last, First

CSE 373 SP 18 - KASEY CHAMPION 2

http://www.socrative.com/

Announcements/ Questions

No overloading, wait for drops

Class page to be live tonight

Sections start tomorrow

CSE 373 SP 18 - KASEY CHAMPION 3

TA Introductions!

CSE 373 SP 18 - KASEY CHAMPION 4

Ryan Pham

Office Hours: Monday 9:30-11:30

Section: Thursday 1:30

Meredith Wu

Office Hours: Friday 1:00 – 3:00pm

Section: Thursday 10:30

Design Decisions

For every ADT there are lots of different ways to implement them

Example: List can be implemented with an Array or a LinkedList

Based on your situation you should consider:
- Memory vs Speed

- Generic/Reusability vs Specific/Specialized

- One Function vs Another

- Robustness vs Performance

This class is all about implementing ADTs based on making the right design tradeoffs!

> A common topic in interview questions

CSE 373 SP 18 - KASEY CHAMPION 5

Review: “Big Oh”

efficiency: measure of computing resources used by code.
- can be relative to speed (time), memory (space), etc.

- most commonly refers to run time

Assume the following:
- Any single Java statement takes same amount of time to run.

- A method call's runtime is measured by the total of the statements inside the method's body.

- A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.

We measure runtime in proportion to the input data size, N.
- growth rate: Change in runtime as N gets bigger. How does this algorithm perform with larger and larger sets of

data?

Say an algorithm runs 0.4N3 + 25N2 + 8N + 17 statements.
- We ignore constants like 25 because they are tiny next to N.

- The highest-order term (N3) dominates the overall runtime.

- We say that this algorithm runs "on the order of" N3.

- or O(N3) for short ("Big-Oh of N cubed")

CSE 143 SP 17 – ZORA FUNG 6

Review: Complexity Class

CSE 373 SP 18 - KASEY CHAMPION 7

complexity class: A category of algorithm efficiency based on the algorithm's
relationship to the input size N.

Class Big-Oh If you double N, ... Example

constant O(1) unchanged Accessing an index of an array

logarithmic O(log2 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log2 N) slightly more than doubles Merge sort algorithm

quadratic O(N2) quadruples Nested loops!

...

exponential O(2N) multiplies drastically Fibonacci with recursion

Review: Case Study: The List ADT

list: stores an ordered sequence of information.
-Each item is accessible by an index.

-Lists have a variable size as items can be added and removed

Supported Operations:
-get(index): returns the item at the given index

-set(value, index): sets the item at the given index to the given value

-append(value): adds the given item to the end of the list

-insert(value, index): insert the given item at the given index maintaining order

-delete(index): removes the item at the given index maintaining order

-size(): returns the number of elements in the list

CSE 373 SP 18 - KASEY CHAMPION 8

List ADT tradeoffs

Time needed to access i-th element:
- Array: O(1) constant time

- LinkedList: O(n) linear time

Time needed to insert at i-th element
- Array: O(n) linear time

- LinkedList: O(n) linear time

Amount of space used overall
- Array: sometimes wasted space

- LinkedList: compact

Amount of space used per element
- Array: minimal

- LinkedList: tiny extra

CSE 373 SP 18 - KASEY CHAMPION 9

0 1 2 3 4

‘h’ ‘e’ ‘l’ ‘l’ ‘o’

‘h’ ‘o’ /‘e’ ‘l’ ‘l’

char[] myArr = new char[5]

front

LinkedList<Character> myLl = new LinkedList<Character>();

Thought Experiment

Discuss with your neighbors: How would you implement the List ADT for each of the
following situations? For each consider the most important functions to optimize.

Situation #1: Write a data structure that implements the List ADT that will be used to store a
list of songs in a playlist.

LinkedList

Situation #2: Write a data structure that implements the List ADT that will be used to store
the count of students who attend class each day of lecture.

ArrayList

Situation #3: Write a data structure that implements the List ADT that will be used to store
the set of operations a user does on a document so another developer can implement the
undo function.

Stack

CSE 373 SP 18 - KASEY CHAMPION 10

Review: What is a Stack?

stack: A collection based on the principle of adding elements and retrieving them in the
opposite order.
- Last-In, First-Out ("LIFO")

- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine
the last element added (the "top").

basic stack operations:
- push(item): Add an element to the top of stack

- pop(): Remove the top element and returns it

- peek(): Examine the top element without removing it

- size(): how many items are in the stack?

- isEmpty(): true if there are 1 or more items in stack, false otherwise

CSE 143 SP 17 – ZORA FUNG 11

stack

top 3

2

bottom 1

pop, peekpush

Implementing a Stack with an Array

0 1 2 3 4

CSE 373 SP 18 - KASEY CHAMPION 12

push(3)

push(4)

pop()

push(5)

3 45

numberOfItems = 012

Review: Generics

// a parameterized (generic) class

public class name<TypeParameter> {

...

}

- Forces any client that constructs your object to supply a
type.

- Don't write an actual type such as String; the client does that.

- Instead, write a type variable name such as E (for "element") or T (for
"type").

- You can require multiple type parameters separated by commas.

- The rest of your class's code can refer to that type by
name.

CSE 373 SP 18 - KASEY CHAMPION 13

public class Box {

private Object object;

public void set(Object object) {

this.object = object;

}

public Object get() {

return object;

}

}

public class Box<T> {

private T t;

public void set(T t) {

this.t = t;

}

public T get() {

return t;

}

}

More details: https://docs.oracle.com/javase/tutorial/java/generics/types.html

https://docs.oracle.com/javase/tutorial/java/generics/types.html

Implementing a Generic Stack

CSE 373 SP 18 - KASEY CHAMPION 14

Review: What is a Queue?

queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")

- Elements are stored in order of insertion but don't have indexes.

- Client can only add to the end of the queue, and can only examine/remove
the front of the queue.

basic queue operations:
- add(item): aka “enqueue” add an element to the back.

- remove(): aka “dequeue” Remove the front element and return.

- peek(): Examine the front element without removing it.

- size(): how many items are stored in the queue?

- isEmpty(): if 1 or more items in the queue returns true, false otherwise

CSE 143 SP 17 – ZORA FUNG 15

queue

front back

1 2 3
addremove, peek

Implementing a Queue

0 1 2 3 4

CSE 373 SP 18 - KASEY CHAMPION 16

enqueue(5)

enqueue(8)

enqueue(9)

dequeue() numberOfItems = 0

5 8 9

123

Circular Queues

CSE 373 SP 18 - KASEY CHAMPION 17

0 1 2 3 4

numberOfItems = 0

5 8 9

123

enqueue(5)

enqueue(8)

enqueue(9)

dequeue()

front back

Wrapping Around

CSE 373 SP 18 - KASEY CHAMPION 18

0 1 2 3 4

numberOfItems = 3

front back

5 9 2 74

enqueue(7)

enqueue(4)

enqueue(1)
45

0 1 2 3 4 5 6 7 8 9

5 9 2 7 4

front back

1

TODO list

Fill out survey!
-Link on class page

Class webpage to be live tonight:
-Skim through full Syllabus on class web page

-Sign up for Piazza

-Review 142/143 materials. Materials provided on class webpage

CSE 373 SP 18 - KASEY CHAMPION 19

