
Section 06: Solutions

1. B-Trees

(a) Insert the following into an empty B-Tree with M = 3 and L = 3: 12, 24, 36, 17, 18, 5, 22, 20.

Solution:

(b) Given the following parameters for a B-Tree with M = 11 and L = 8:

• Key Size = 10 bytes

• Pointer Size = 2 bytes

• Data Size = 16 bytes per record (includes the key)

Assuming that M and L were chosen appropriately, what is the likely page size on the machine where this
implementation will be deployed? Give a numeric answer based on two equations using the parameter values
above. Hint: Some equations you might need to use are:

M = bp+ k

t+ k
c

L = b p−t

k + v
c

where p is the page size in bytes, k is key size in bytes, t is pointer size in bytes, and v is value size in bytes.
Hint: Think about where these values come from.
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Solution:

p ≥ Mt+ (M − 1)k

≥ (11)(2) + (11− 1)(10)

≥ 122p ≥ t+ L(k + v) ≥ 2 + 8(16) ≥ 2 + 128 ≥ 130

Page size must be at least 130 bytes.

(c) Give an example of a situation that would be a good job for a B-tree. Furthermore, are there any constraints
on the data that B-trees can store?

Solution:

B-trees are most appropriate for very, very large data stores, like databases, where the majority of the
data lives on disk and cannot possibly fit into RAM all at once. B-trees require orderable keys. B-trees
are typically not implemented in Java because because what makes them worthwhile is their precise
management of memory.

(d) Find a tight upper bound on the worst case runtime of these operations on a B-tree. Your answers should be
in terms of L, M , and n.

(i) Insert a key-value pair

Solution:

The steps for insert and delete are similar and have the same worst case runtime.

(i) Find the leaf: O (lg(M)logM (n)).

(ii) Insert/remove in the leaf – there are L elements, essentially stored in an array: O (L)

(iii) Split a leaf/merge neighbors: O (L)

(iv) Split/merge parents, in the worst case going up to the root: O (MlogM (n))

The total cost is then lg(M)logM (n) + 2L+MlogM (n).

We can simplify this to aworst-case runtimeO (L+MlogM (n)) by combining constants and observing
that MlogM (n) dominates lg(M)logM (n). Note that in the average case, splits for any reasonably-
sized B-tree are rare, so we can amortize the work of splitting over many operations.

However, if we’re using a B-tree, it’s because what concerns us the most is the penalty of disk accesses.
In that case, we might find it more useful to look at the worst-case number of disk lookup operations
in the B-tree, which is O (logM (n)).
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(ii) Look up the value of a key

Solution:

(i) We must do a binary search on a node containing M pointers, which takes O (lg(M)) time, once
at each level of the tree.

(ii) There are O (logM(n)) levels.

(iii) We must do a binary search on a leaf of L elements, which takes O (lg(L)) time.

(iv) Putting it all together, a tight bound on the runtime is O (lg(M)logM (n) + lg(L)).

(iii) Delete a key-value pair

Solution:

See solution for inserting a key-value pair.

(e) Insert and then delete the following from a B-tree:

(i) Insert the following into an empty B-Tree with M = 3 and L = 3: 3, 18, 14, 30, 32, 36, 15, 16, 12, 40,
45, 38.

Solution:

(ii) Delete 45, 14, 15, 36, 32, 18, 38, 40, 12 from the tree in the previous part.

Solution:
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2. Memory

(a) What are the two types of memory locality?

Solution:

Spatial locality is memory that is physically close together in addresses. Temporal locality is the assumption
that pages recently accessed will be accessed again.

(b) Does this more benefit arrays or linked lists?

Solution:

This typically benefits arrays. In Java, array elements are forced to be stored together, enforcing spatial
locality. Because the elements are stored together, arrays also benefit from temporal locality when iterating
over them.

(c) What about Java makes it a poor choice for implementing B-trees?

Solution:

Java can’t page-align its memory allocation.

3. Memory and B-Trees

(a) Based on your understanding of how computers access and store memory, why might it be faster to access all
the elements of an array-based queue than to access all the elements of a linked-list-based queue?

Solution:

The internal array within the array-based queue is more likely to be contiguous in memory compared to
the linked list implementation of an array. This means that when we access each element in the array, the
surrounding parts of the array are going to be loaded into cache, speeding up future accesses.

One thing to note is that the array-based queue won’t necessarily automatically be faster then the linked-
list-based one, depending on how exactly it’s implemented.

A standard queue implementation doesn’t support the iterator() operation, and a standard array-list
based queue implements either O (n) enqueue or dequeue.

In that case, if we’re forced to access every element by progressively dequeueing and re-enqueuing each
element, iterating over a standard array-based queue would take O

(
n2

)
time as opposed to the linked-

list-based queue’sO (n) time. In that case, the linked-list version is going to be far faster then the array-list
version for even relatively smaller values of n.

The only way we could have the array-based queue be consistently faster is if it supported O (1) enqueues
and dequeues. (Doing this is actually possible, albeit slightly non-trivial.)
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(b) Why might f2 be faster than f1?

public void f1(String[] strings) {

for (int i=0; i < strings.length; i++) {

strings[i] = strings[i].trim(); // omits trailing/leading whitespace

}

for (int i=0; i < strings.length; i++) {

strings[i] = strings[i].toUpperCase();

}

}

public void f2(String[] strings) {

for (int i=0; i < strings.length; i++) {

strings[i] = strings[i].trim(); // omits trailing/leading whitespace

strings[i] = strings[i].toUppercase();

}

}

Solution:

Temporal Locality. At each iteration, the specific string from the array is already loaded into the cache.
When performing the next process toUppercase(), the content can just be loaded from cache, instead of
disk or RAM.

(c) Let k be the size of a key, t be the size of a pointer, and v be the size of a value.

Write an expression (using these variables as well as M and L) representing the size of an internal node and
the size of a leaf node.

Solution:

An internal node has M children, and therefore M − 1 keys inside. We need a pointer to each child, so
we get Mt+ (M − 1)k bytes.

A leaf node is defined as having L key-value pairs, so the total size is L(k + v) bytes.

Note: This is all assuming the node objects themselves contain no overhead. Java objects do have a certain
amount of overhead associated with them, but many programming languages let you construct objects (or
object-like structures) where their size in bytes is exactly the sum of the size of the fields, with no extra
overhead.

For the sake of simplicity, we will be assuming we are using those kinds of programming languages, and
that our B-tree nodes have no extra memory overhead.

(d) Suppose you are trying to implement a B-tree on a computer where the page size (aka the block size) is p = 130
bytes.

You know the following facts:

• Key size k = 10 bytes

• Value size v = 6 bytes

• Pointer size t = 2 bytes

What values of M and L should you pick to make sure that your internal and external nodes (a) fit within a
single page and (b) uses as much of that page as possible.

Be sure to show your work. The equations you derived in the previous part will come in handy here.
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Solution:

We want to pick the largest M and L that satisfy Mt+ (M − 1)k ≤ p and L(k + v) ≤ p.

We can start by computing L, since that’s easier. We have L(10 + 6) + 2 ≤ 130, which simplifies into

L ≤ 128

16
.

If we divide 128 by 16, we get about 8.0. L must be a whole number, but this works out anyway, so we
know L = 8.

We can do something similar for M . We can rearrange the inequality:

Mt+ (M − 1)k ≤ p

Mt+Mk − k ≤ p

M(t+ k) ≤ p+ k

M ≤ p+ k

t+ k

We plug in numbers, and get M ≤ 130 + 10

2 + 10
. If we divide 140 by 12, we get about 11.66. So, we know

M = 11.

Our final answer: M = 11 and L = 8.

(e) Consider the following “B-Tree”:

(i) What are M and L?

Solution:

M = 4; L = 2.
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(ii) Is there anything wrong with the above B-Tree? If so, what is wrong?

Solution:

(i) 6 and 5 should be swapped in the second leaf

(ii) The leaves containing 8 and 12 should be consolidated; the leaves containing 14 and 23 should
be consolidated.

(iii) The inner nodes are missing the values: left-most inner node should have 5 in the first entry,
right-most inner node should have 14 in the first entry and the root node should have 8 in the
first entry.

(f) Consider the following code:

public static int sum(IList<Integer> list) {

int output = 0;

for (int i = 0; i < 128; i++) {

// Reminder: foreach loops in Java use the iterator behind-the-scenes

for (int item : list) {

output += item;

}

}

return output;

}

You try running this method twice: the first time, you pass in an array list, and the second time you pass in a
linked list. Both lists are of the same length and contain the exact same values.

You discover that calling sum on the array list is consistently 4 to 5 times faster then calling it on the linked
list. Why do you suppose that is?

Solution:

This is most likely due to spatial locality. When we iterate through a linked list, accessing the value at one
particular index will load the next few elements into the cache, speeding up the overall time needed to
access each element.

In contrast, each node in the linked list is likely loaded in a random part of memory – this means we likely
must load each node into the cache, which slows down the overall runtime by some constant factor.

(g) Suppose you are trying to use a B-Tree somebody else wrote for your system. You know the following facts:

• M = 10 and L = 12

• The size of each pointer is 16 bytes

• The size of each key is 14 bytes

• The size of each value is 11 bytes

Assuming M and L were chosen wisely, what is most likely the page size on this system?
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Solution:

If L is 12, and each key-value pair occupies 14 + 11 = 25 bytes, we know each leaf node occupies at least
12× 25 = 300 bytes.

If M is 10, we know each each branch node occupies at least M × 16 + (M − 1)× 14 = 160 + 126 = 286
bytes.

This leads us to conclude that the page size is most likely 300 bytes on this system.

4. Memory and B-Trees: A Sequel

(a) Suppose you are writing a program that iterates over an AvlTreeDictionary – a dictionary based on an
AVL tree. Out of curiosity, you try replacing it with a SortedArrayDictionary. You expect this to make
no difference since iterating over either dictionary using their iterator takes worst-case Θ(n) time.

To your surprise, iterating over SortedArrayDictionary is consistently almost 10 times faster!

Based on your understanding of how computers organize and access memory, why do you suppose that is?
Be sure to be descriptive.

Solution:

This is almost absolutely because the SortedArrayDictionary is implemented with an array, which has
much better spatial locality, than how the AvlTreeDictionary is most likely implemented, with a series
of linked AVL tree nodes. Since we know that iterating over an array is faster than iterating over a linked
list, the reasoning behind a faster tree is similar and reasonable.

(b) Excited by your success, you next try comparing the performance of the get(...) method. You expected to
see the same speedup, but to your surprise, both dictionaries’ get(...) methods seem to consistently perform
about the same.

Based on your understanding of how computers organize and access memory, why do you suppose that is?

(Note: assume that the SortedArrayDictionary’s get(...) method is implemented using binary search.)

Solution:

Spatial locality can only be taken advantage of when iterating sequentially. With that, it’s not surprising
that because we have to jump from i=100 to i=50, etc. until we find what we’re looking for. If the array
is so big that it spans over multiple pages, the locality that regular iteration takes advantage of is not
available to jumping around with get().

(c) You want to implement a B-Tree for a computer that has a page or block size of p = 256 bytes. Your pointers
are t = 4 bytes long, your keys are k = 2 byte long, and your values are v = 8 bytes long. What should you
select for M and L in order to maximize the performance of your B-tree? Please show your work.

Reminder: M and L must selected such that the following two inequalities remain true:

Mt+ (M − 1)k ≤ p and L(k + v) ≤ p

Solution:

M = 43 and L = 25
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5. Heaps

(a) Insert the following sequence of numbers into a min heap:

[10, 7, 15, 17, 12, 20, 6, 32]

Solution:

6

10

17

32

12

7

20 15

(b) Now, insert the same values into a max heap.

Solution:

32

20

15

7

12

17

10 6

(c) Now, insert the same values into a min heap, but use Floyd’s buildHeap algorithm.

Solution:

6

7

17

32

12

10

20 15
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(d) Insert 1, 0, 1, 1, 0 into a min heap.

Solution:

0

0

1 1

1

6. Heaps: A Sequel

(a) Insert the following numbers into a max heap in the order provided: 10, 15, 5, 2, 20, 30, 4, 1, 41

DO NOT use buildHeap; just insert them one by one. Showing your work might be prudent on a real exam
(for partial credit).

Solution:

41

30

15

1 2

10

20

5 4

(b) Re-order the numbers so that if you were to insert them into a heap again, (1) the result would be an identical
heap, and (2) the number of comparisons is minimal.

Solution:

41, 30, 20, 15, 10, 5, 4, 1, 2

(c) Draw out the array version of the heap from part (a).

Solution:

41 30 20 15 10 5 4 1 2
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