
Section 05: Solutions

1. Asymptotic Analysis

(a) Applying definitions

For each of the following, choose a c and n0 which show f(n) ∈ O(g(n)). Explain why your values of c and
n0 work.

(i) f(n) = 5000n2 + 6n
√
n and g(n) = n3

Solution:

Note: The “point” of these types of questions is less about whether or not you can find a working
c and n0, and more about whether or not you can explain why your choice of c and n0 works. To
reinforce this point, this answer is deliberately very meticulous – probably a little bit more then is
strictly speaking necessary.

We are trying to find a c and n0 such that 5000n2 + 6n
√
n ≤ cn3 is true for all values of n ≥ n0.

First, consider the following inequalities.

f(n) ≤ 5000n2 + 6n
√
n for all n

5000n2 + 6n
√
n ≤ 5000n2 + 6n2 when n ≥ 1

5000n2 + 6n2 ≤ 5006n2 for all n

5006n2 ≤ 5006n3 for all n ≥ 1

5006n2 ≤ cn3 when c ≥ 5006

cn3 ≤ cg(n) for all n

Observe that the above chain of inequalities are true when c ≥ 5006 and for all values of n ≥ 1.

This means that when c ≥ 5006 and n ≥ 1, it must be the case that f(n) ≤ cg(n) is true.

So, we can pick c = 5006 and n0 = 1.

1

(ii) f(n) = n(4 + log(n)) and g(n) = n2

Solution:

Note 1: we are presenting this solution in a slightly different way then the previous one to help you
get a feel for different ways you can answer this style of question.

Note 2: unlike the previous solution, which walked the reader through the process of discovering a
c and n0, this solution basically provides a c and n0 up-front, then demonstrates that they satisfy the
definition for the given f(n) and g(n). Pragmatically, if you were to answer in this style, you would
start by writing down part of the first line, leave it mostly blank, write the rest of the answer, then
go back and finish the first line after-the-fact.

Let c = 5 and n0 = 1.

Notice that the each of the following equalities and inequalities are true.

f(n) = n(4 + log(n))

n(4 + log(n)) = 4n+ n log(n)

4n+ n log(n) ≤ 4n2 + n2 for all n ≥ n0

5n2 = cg(n)

By the properties of inequalities, we then can conclude that f(n) ≤ cg(n) is also true.

(iii) f(n) = 2n and g(n) = 3n

Solution:

As before, we must find a c and n0 such that 2n ≤ c3n for all n ≥ n0.

Notice that since 2 ≥ 3, multiplying together 2 n times is always going to be smaller the multiplying
together 3 n times (so long as n is a positive number.

So, we can pick c = 1 and n0 = 1.

(b) Runtime Analysis

For each of the following, give a Θ-bound for runtime of the algorithm/operation:

(i) Best-case get in a binary search tree of size n.

Solution:

Θ(log(n))

(ii) Best-case put in a hash table with size n and a current λ = 1 if the collision resolution is:

• Separate chaining

• Linear Probing

Solution:

For separate chaining, Θ(1). For linear probing, Θ(n). (If λ = 1, we must resize first.)

2

(iii) Pop a value off a stack containing n elements implemented as an array.

Solution:

Θ(1)

(iv) Finding the minimum value in a BST of size n.

Solution:

In the worst case, Θ(n) (the tree could be degenerate, skewing left).

In the average case, where the tree is balanced, Θ(log(n)).

In the best case, Θ(1) (the tree could be degenerate, skewing right).

(v) Finding the minimum value in a AVL tree of size n.

Solution:

Θ(log(n))

(vi) Print out values in AVL tree of size n.

Solution:

Θ(n)

(vii) Iterating through and printing every element in an array list using a for loop and the get(i) method.

Solution:

Θ(n)

(viii) Pop on a stack containing n elements implemented as a singly-linked list.

Solution:

The answer depends on how the stack is implemented.

If we pop from the front, Θ(1). If we pop from the end (which would be a somewhat silly decision),
Θ(n).

(ix) Inserting a value into an AVL tree of size n, where the value you are inserting is smaller than any other
values currently in the tree.

Solution:

Θ(log(n))

3

2. Eyeballing Big-Θ bounds

For each of the following code blocks, what is the worst-case runtime? Give a big-Θ bound. You do not need to
justify your answer.

(a) void f1(int n) {

int i = 1;

int j;

while(i < n*n*n*n) {

j = n;

while (j > 1) {

j -= 1;

}

i += n;

}

}

Solution:

Θ(n4)

One thing to note that the while loop has increments of i+ = n. This causes the outer loop to repeat n3

times, not n4 times.

(b) int f2(int n) {

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

System.out.println(”j = ” + j);

}

for (int k = 0; k < i; k++) {

System.out.println(”k = ” + k);

for (int m = 0; m < 100000; m++) {

System.out.println(”m = ” + m);

}

}

}

}

Solution:

Θ(n2)

Notice that the last inner loop repeats a small constant number of times – only 100000 times.

4

(c) int f3(n) {

count = 0;

if (n < 1000) {

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

for (int k = 0; k < i; k++) {

count++;

}

}

}

} else {

for (int i = 0; i < n; i++) {

count++;

}

}

return count;

}

Solution:

Θ(n)

Notice that once n is large enough, we always execute the ‘else’ branch. In asymptotic analysis, we only
care about behavior as the input grows large.

(d) void f4(int n) {

IList<Integer> arr = new DoubleLinkedList<>();

for (int i = 0; i < n; i++) {

if (list.size() > 20) {

list.remove(0);

}

list.add(i);

}

for (int i = 0; i < list.size; i++) {

System.out.println(list.get(i));

}

}

Solution:

Θ(n)

Note that arr would have a constant size of 20 after the first loop. Since this is a DoubleLinkedList, add
and remove would both be Θ(1).

5

3. Modeling

Consider the followingmethod. Let n be the integer value of the n parameter, and letm be the length of DoubleLinkedList.
You may assume that n > 7.

public int mystery(int n, DoubleLinkedList<Integer> list) {

if (n < 7) {

System.out.println(”???”);

int out = 0;

for (int i = 0; i < n; i++) {

out += i;

}

return out;

} else {

System.out.println(”???”);

System.out.println(”???”);

out = 0;

for (int i : list) {

out += 1;

for (int j = 0; j < list.size(); j++) {

System.out.println(list.get(j));

}

}

return out + 2 * mystery(n - 4, list) + 3 * mystery(n / 2, list);

}

}

Note: your answer to all three questions should be a recurrence, possibly involving a summation. You do not need
to find a closed form.

(a) Construct a mathematical function modeling the approximate worst-case runtime of this method in terms of
n and m.

Solution:

T (n,m) =

{
1 when n < 7

m3 + T (n− 4,m) + T (n/2,m) otherwise

(b) Construct a mathematical function modeling the exact integer output of this method in terms of n and m.

Solution:

I(n,m) =

{∑n−1
i=0 i when n < 7

m+ 2I(n− 4,m) + I(n/2,m) otherwise

(c) Construct a mathematical function modeling the exact number of lines printed out in terms of n and m.

Solution:

P (n,m) =

{
1 when n < 7

2 +m2 + P (n− 4,m) + P (n/2,m) otherwise

6

4. AVL/BST

(a) Insert {94, 33, 50, 76, 96, 67, 56, 65, 83, 34} into an initially empty AVL tree.

Solution:

76

50

33

34

65

56 67

94

83 96

(b) Insert {6, 5, 4, 3, 2, 1, 10, 9, 8, 6, 7} into an initially empty AVL tree.

Solution:

6

3

2

1

5

4

9

8

7

10

(c) Suppose you insert 7 elements into a BST. What are the possible heights after the insertions? (Think about
different orders of inserting elements).

Solution:

Any height from 2 (a tree where each internal node has exactly two children) to 6 (a degenerate tree) is
possible.

(d) If you insert 7 elements into an AVL tree, what are the possible heights of the tree?

Solution:

An AVL tree with 7 elements could be height 2 or 3. It cannot be height 4: if the height is 4, then for
the root to be balanced, one subtree must have height 3 and the other at least 2. A height 2 AVL tree
needs at least 4 elements (or the root of the subtree won’t be balanced), so in our 7 element tree, we have
4 elements for one subtree, plus the root, which leaves only 2 elements for the other subtree. But that
subtree was supposed to be height 3, so there just aren’t enough elements to fill it out.

Notice that the AVL tree doesn’t guarantee you the minimum possible height (there are AVL trees with 7
elements of height 3), but it does avoid the worst case.

7

(e) More generally, what is the minimum number of nodes in an AVL tree of height 4? Draw an instance of such
an AVL tree.

Solution:

We can approach this problem iteratively (or recursively, depending on your point of view).

First, what is the smallest possible AVL tree of height 0? Well, just a single node:

What about the smallest possible AVL tree of height 1? With some thought, we arrive at this answer:

What about the smallest possible AVL tree of height 2? Well, if we think about this critically, we know
that our tree must contain at least one subtree of height 1 (if it’s any other height, our AVL tree wouldn’t
have height 2). If we’re trying to minimize the number of nodes, we might as well make the other subtree
have a height of 0. That minimizes the total number of nodes.

Now, if only we know what the smallest possible AVL trees of height 1 and 0 were...

We can reuse our answers above to get:

We repeat to get the smallest possible AVL tree of height 3: combine together the smallest possible AVL
trees of heights 1 and 2:

We repeat one more time, for the smallest possible AVL tree of height 4:

If we count the number of nodes, we get 12.

8

More generally, we can find the number nodes in the smallest possible AVL tree by computing the following
recurrence:

minNumNodes(h) =


1 if h = 0

2 if h = 1

1 +minNumNode(n− 2) +minNumNodes(n− 1) otherwise

(f) Describe an implementation of delete() for a BST.

Solution:

There are a few different cases we have to consider when deleting data from a tree with really rigid
structure rules like a BST or AVL tree. Let’s start with the easiest.

When the node we want to delete is a leaf node, where it has no left or right children, then great! Just set
the reference pointing to it to null. Easy.

What about a branch node, such that the node has a left or right child (but not both)? Hmm, well that
gets a little trickier, but no worries, we just substitute that deleted node with its singular child. No biggie.

But what about a branch or root node with two children? Which one gets to be the replaced node? We’ll get
to the lazy solution soon, but let’s say you absolutely must replace the node. Maybe your project manager
is super concerned with that small amount of memory. What should that replaced tree look like? Say we
had a tree that looked like this:

76

50

33

34

65

56 67

94

83 96

And then let’s say we want to call delete(50). What should the replaced subtree look like? Well, we
want the tree to keep its BST property for either BST or AVL tree, of course. This means that the replaced
subtree’s root must be such a value that it maintains sortedness (its left values are less, right values are
greater). There are a few possible solutions that depend on implemenation, but one resulting tree could
be:

76

33

34

65

56 67

94

83 96

Now, this resulting tree seems like a stretch, but hear me out. All we did was replace root with the left
subtree, and delegate the right subtree to be the right-most thing in the left subtree. This is still a valid
BST tree. You can flip this around to replace root with the right subtree and delegate the left subtree tot
be the left-most thing in the right subtree, of course. You do you.

9

(g) Adapt delete() for a BST to work for an AVL tree. Don’t worry if there are some edge cases that don’t quite
work yet, the next part will help with those.

Solution:

If you remember from the last problem, clearly we had a valid AVL tree, and now it’s not. What the heck?
The new tree is more unbalanced than any AVL tree we’ve seen before. If you’ll notice, the 34 node is the
bottom-most non-balanced node, but no insertion into an AVL tree would ever naturally produce that, so
we never wrote rotations for this situation. Trying to make rotations fix this seems complicated. Let’s try
to find some other way.

Your PM is still yelling at you to save memory. One solution is to create a new AVL subtree, inserting each
of the subtree’s data one by one, and then replace the deleted node with this new AVL subtree. Without
worrying about efficiency right now (you won’t like it anyway), we could get a tree that looks like this:

76

34

33 65

56 67

94

83 96

And all is well in the world.

If you really wanted to do some rotations, there is a correct way to do it, and it’s been referenced in lecture
a little bit but won’t be reiterated here. Someone on the internet has done a very good job of explaining
this better than we can here! This is a good resource, I highly recommend looking into the specifics of it
here if you absolutely must rotate.

10

https://en.wikipedia.org/wiki/AVL_tree#Delete

(h) Make a more robust (not buggy) delete() for an AVL tree, and try to be as (hint) lazy as possible.

Solution:

What happens when you delete enough stuff that your tree becomes imbalanced? Despite your best efforts
to balance the subtrees? Imagine calling delete(83) and then delete(94). The tree would look like this:

76

34

33 65

56 67

96

And even though we balanced our subtrees, the tree as a whole is not balanced, and yet again, we have
no rotations (unless you went to the resource above) to help us. There must be a better way.

Well, as it so happens, you’ve probably heard that programmers are lazy. This is true. Why else do we get
computers to do stuff for us? Well, one super common way to implement delete() (in any structure, not
just AVL trees) is to implement a dirty bit. This is where we mark a node as “deleted” (“she doesn’t even
go here!”) but don’t actually change the tree at all. Sure, sometimes we get extra stuff that we don’t need,
but this is far easier to implement, and after all three delete calls, we get a tree that looks like this:

76

50

33

34

65

56 67

94

83 96

We know which nodes “aren’t really in the tree” and the tree is still a valid AVL tree. We didn’t save the
memory your PM wanted, but hopefully you can bake them some apologetic cookies.

5. Hash tables

(a) What is the difference between primary clustering and secondary clustering in hash tables?

Solution:

Primary clustering occurs after a hash collision causes two of the records in the hash table to hash to the
same position, and causes one of the records to be moved to the next location in its probe sequence. Linear
probing leads to this type of clustering.

Secondary clustering happens when two records would have the same collision chain if their initial position
is the same. Quadratic probing leads to this type of clustering.

11

(b) Suppose we implement a hash table using double hashing. Is it possible for this hash table to have clustering?

Solution:

Yes, though the clustering is statistically less likely to be as severe as primary or secondary clustering.

(c) Suppose you know your hash table needs to store keys where each key’s hash code is always a multiple of two.
In that case, which resizing strategy should you use?

Solution:

Any strategy where the size of the table is not a multiple of two. For example, we could either make the
hash table’s array have an odd initial starting size then double to resize, or we could have use the prime
doubling strategy.

If the table size were a multiple of two, we would end up using only half the available table entries (if we
were using separate chaining) or have more collisions then usual (if we were using open addressing).

(d) How would you design a hash table that is designed to store a large amount of data – more then you can fit
on RAM?

Solution:

One idea: use separate chaining, have each bucket take up one or more pages. Rather then resizing when
λ ≈ 1, resize once the each bucket’s size is starting to approach some multiple of a page size. Store the
initial array in RAM.

(e) Consider the following key-value pairs.

(6, a), (29, b), (41, d). (34, e), (10, f), (64, g), (50, h)

Suppose each key has a hash function h(k) = 2k. So, the key 6 would have a hash code of 12. Insert each
key-value pair into the following hash tables and draw what their internal state looks like:

(i) A hash table that uses separate chaining. The table has an internal capacity of 10. Assume each bucket
is a linked list, where new pairs are appended to the end. Do not worry about resizing.

Solution:

0 1 2 3 4 5 6 7 8 9

(10,f)

(50,h)

(6,a)

(41,d)

(29,b)

(34,e)

(64,f)

12

(ii) A hash table that uses linear probing, with internal capacity 10. Do not worry about resizing.

Solution:

(10, f)

0

(64, g)

1

(6, a)

2

(41, d)

3

(50, h)

4 5 6 7

(29, b)

8

(34, e)

9

(iii) A hash table that uses quadratic probing, with internal capacity 10. Do not worry about resizing.

Solution:

(10,f)

0

(50, h)

1

(6,a)

2

(41,d)

3 4 5 6

(64, g)

7

(29,b)

8

(34,e)

9

(f) Consider the three hash tables in the previous question. What are the load factors of each hash table?

Solution:

λ =
7

10
= 0.7

13

6. Debugging

Suppose we are trying to implement an algorithm isTree(Node node) that detects whether some binary tree is a
valid one or not, and returns true if it is, and false if it isn’t. In particular, we want to confirm that the tree does
not contain any cycles – there are no nodes where the left and right fields point to their parents.

Assume that the node passed into the method is supposed to be the root node of the tree.

(a) List at least four different test cases for each problem. For each test case, be sure to specify what the input
is (drawing the tree, if necessary), and what the expected output is (assuming the algorithm is implemented
correctly).

Solution:

Some examples of inputs. On an exam, be sure to provide a wide variety of test cases. Some of your cases
should test the “happy” case, some cases should test weird inputs, some cases should test invalid/incorrect
input...

(i) Input: null
Output: true

(ii) Input: a regular, standard tree
Output: true

(iii) Input: a degenerate tree that looks like a linked list
Output: true

(iv) Input: a tree containing a node where either the left or right pointers is pointing to itself
Output: false

(v) Input: a tree containing a node where either the left or right pointers is pointing to some parent
node
Output: false

(vi) Input: a tree containing a node where the left or right pointers is pointing to a neighbor
Output: false

14

(b) Here is one (buggy) implementation in Java. List every bug you can find with this algorithm.

public class Node {

public int data;

public Node left;

public Node right;

// We are simplifying what the equals method is supposed to look like in Java.

// This method is technically invalid, but you may assume it's

// implemented correctly.

public boolean equals(Node n) {

if (n == null) {

return false;

}

return this.data == n.data;

}

public int hashCode() {

// Pick a random number to ensure good distribution in hash table

return Random.randInt();

}

}

boolean isTree(Node node) {

ISet<Node> set = new ChainedHashSet<>();

return isTreeHelper(node, set)

}

boolean isTreeHelper(Node node, ISet<Node> set) {

ISet<Node> set = new ChainedHashSet<>();

if (set.containsKey(node)) {

return false;

} else {

set.add(node);

return isTreeHelper(node.left, set) || isTreeHelper(node.right, set);

}

}

Solution:

Some bugs:

(i) The method does not attempt to handle the case where the input node is null

(ii) If the hashCode returns a random int every time it’s called, it’s going to play havoc with the set – we
wouldn’t be able to reliably insert the node anywhere.

(iii) We are trying to use the ChainedHashSet as a way of keeping track of every node object we’ve pre-
viously visited. However, we override the set with a new, empty one on each recursive call, wiping
out our progress.

(iv) The “or” in the last line should be an “and” – if the left subtree or the right subtree isn’t actually a tree,
we should return ‘false’ right away. Currently, we return false only if both subtrees aren’t actually
trees.

15

