Section 03: Solutions

Review Problems

1. Code Analysis

For each of the following code blocks, what is the worst-case runtime? Give a big-Θ bound.

(a)
```java
public IList<String> repeat(DoubleLinkedList<String> list, int n) {
    IList<String> result = new DoubleLinkedList<String>();
    for (String str : list) {
        for (int i = 0; i < n; i++) {
            result.add(str);
        }
    }
    return result;
}
```

Solution:

The runtime is Θ(nm), where m is the length of the input list and n is equal to the int n parameter.

One thing to note here is that unlike many of the methods we’ve analyzed before, we can’t quite describe the runtime of this algorithm using just a single variable: we need two, one for each loop.

The other thing to remember is that in Java, foreach loops are converted into a while loop using iterators, which will influence the final runtime of our algorithm.

(b)
```java
public void foo(int n) {
    for (int i = 0; i < n; i++) {
        for (int j = 5; j < i; j++) {
            System.out.println("Hello!");
        }
    }
    for (int j = i; j >= 0; j -= 2) {
        System.out.println("Hello!");
    }
}
```

Solution:

The inner loop executes about \(i - 5 + 1/2\) operations per loop. So we execute about

\[
\sum_{i=0}^{n} i - 5 + i/2 = \frac{3}{2} \sum_{i=0}^{n} i - \sum_{i=0}^{n} 5 = \frac{3n(n-1)}{4} - 5n
\]

Θ(n²).
(c)
```java
public int num(int n){
    if (n < 10) {
        return n;
    } else if (n < 1000) {
        return num(n - 2);
    } else {
        return num(n / 2);
    }
}
```

Solution:

The answer is $\Theta (\log(n))$.

One thing to note is that the second case effectively has no impact on the runtime. That second case occurs only for $n < 1000$ – when discussing asymptotic analysis, we only care what happens with the runtime as n grows large.

(d)
```java
public int foo(int n) {
    if (n <= 0) {
        return 3;
    }
    int x = foo(n - 1);
    System.out.println("hello");
    x += foo(n - 1);
    return x;
}
```

Solution:

The answer is $\Theta (2^n)$.

In order to determine that this is exponential, let’s start by considering the following recurrence:

$$T(n) = \begin{cases}
1 & \text{If } n = 0 \\
2T(n - 1) + 1 & \text{Otherwise}
\end{cases}$$

While we could unfold this to get an exact closed form, we can approximate the final asymptotic behavior by taking a step back and thinking on a higher level what this is doing.

Basically, what happens is we take the work done by $T(n - 1)$ and multiply it by 2. If we ignore the +1 constant work done in the recursive case, the net effect is that we multiply 2 approximately n times. This simplifies to 2^n.

2. Binary Search Trees

(a) Write a method validate to validate a BST. Although the basic algorithm can be converted to any data structure and work in any format, if it helps, you may write this method for the IntTree class:

```java
public class IntTree {
    private IntTreeNode overallRoot;

    // constructors and other methods omitted for clarity

    private class IntTreeNode {
        public int data;
        public IntTreeNode left;
        public IntTreeNode right;

        // constructors omitted for clarity
    }
}
```

Solution:

```java
public boolean validate() {
    return validate(overallRoot, Integer.MIN_VALUE, Integer.MAX_VALUE);
}

private boolean validate(IntTreeNode root, int min, int max) {
    if (root == null) {
        return true;
    } else if (root.data > max || root.data < min) {
        return false;
    } else {
        return validate(root.left, min, root.data - 1) &&
                validate(root.right, root.data + 1, max);
    }
}
```
Section Problems

3. Recurrences

For each of the following recurrences, use the unfolding method to first convert the recurrence into a summation. Then, find a big-Θ bound on the function in terms of n. Assume all division operations are integer division.

(a) $T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n/2) + 3 & \text{otherwise} \end{cases}$

Solution:

Unfolding a few levels to find a pattern:

$$T(n) = T(n/2) + 3$$
$$= T(n/4) + 3 + 3$$
$$= T(n/8) + 3 + 3 + 3$$
$$= T(n/2^i) + 3i$$

Setting $i = \log n$ to force the input into a base case, we get: $1 + \sum_{i=2}^{\log(n)+1} 3$. The big-$\Theta$ bound is $\Theta(\log(n))$.

Something you may notice is that depending on what exactly n is, the expression $\log(n) + 1$ may not evaluate to an integer. In that case, what does it mean to have $\log(n) + 1$ as the upper limit of a summation?

What exactly this mean differs based on convention, but for the purposes of this class, we'll assume that i varies starting at 2 up to the largest possible integer that is $\leq \log(n) + 1$. We could write this more explicitly using floors: $1 + \sum_{i=2}^{\lfloor \log(n) + 1 \rfloor} 3$.

(b) $T(n) = \begin{cases} 1 & \text{if } n = 0 \\ T(n - 1) + 2 & \text{otherwise} \end{cases}$

Solution:

The summation is $1 + \sum_{i=1}^{n} 2$. The big-Θ bound is $\Theta(n)$.

(c) \(T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \)

Solution:

Unfolding a few levels to find a pattern sounds good, but this one is easier to see if we strategically choose an \(n \) such that we reach the base case easily, like \(n = 8 \):

\[
\begin{align*}
T(8) &= 2T(8/2) + 8 \\
T(8/2) &= 2T(8/(2 \cdot 2)) + 8/2 \\
T(8) &= 2(2T(8/(2^2)) + 8/2) + 8 \\
&= 2^2T(8/(2^2)) + 8 + 8 \\
&= 2^2T(8/(2^2)) + 2 \cdot 8 \\
T(8/(2^2)) &= 2T(8/(2^2 \cdot 2)) + 8/(2^2) \\
T(8) &= 2^2(2T(8/(2^2 \cdot 2)) + 8/(2^2)) + 2 \cdot 8 \\
&= 2^3T(8/(2^3)) + 8 + 2 \cdot 8 \\
&= 2^3T(8/(2^3)) + 3 \cdot 8 \\
T(8/(2^3)) &= 1
\end{align*}
\]

It’s becoming clearer now that we can generalize \(T(n) \) in terms of \(i \), such that \(T(n) = 2^iT(n/2^i) + i \cdot n \). Setting \(i = \log(n) \) to force the input into a base case, we get: \(\sum_{i=0}^{\log(n)} n = n \log(n) + n \). The big-\(\Theta \) bound is \(\Theta(n \log(n)) \).

(d) \(T(n) = \begin{cases}
1 & \text{if } n = 0 \\
T(n/3) + 4 & \text{otherwise}
\end{cases} \)

Solution:

The summation is \(1 + \sum_{i=1}^{\log(n)+1} 4 \). The big-\(\Theta \) bound is \(\Theta(\log n) \).

(e) \(T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T(n-1) + 1 & \text{otherwise}
\end{cases} \)

Solution:

Using a similar process, we get the following expression: \(2^{n-1} + \sum_{k=0}^{n-2} 2^k = 2^{n-1} + 2^{n-1} - 1 \). Both of these terms are \(\Theta(2^n) \) (because \(2^{n-1} = \frac{1}{2} 2^n = \Theta(2^n) \)). This ends up being in \(\Theta(2^n) \).
4. Modeling recursive functions

(a) Consider the following method.

```java
public static int f(int n) {
    if (n == 0) {
        return 0;
    }
    int result = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
            result += j;
        }
    }
    return 5 * f(n / 2) + 3 * result + 2 * f(n / 2);
}
```

(i) Find a recurrence $T(n)$ modeling the worst-case runtime of $f(n)$.

Solution:

$$T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T(n/2) + 100 & \text{otherwise}
\end{cases}$$

We first get $T(n) = 2^i T(n/2^i) + (2^i - 1)100$, then the summation is $-100 + \sum_{i=0}^{\log_2 n} 101$.

Therefore, we have $\Theta(n)$.

(ii) Find a recurrence $W(n)$ modeling the returned integer output of $f(n)$.

Solution:

$$W(n) = \begin{cases}
0 & \text{when } n = 0 \\
\frac{n(n-1)(n-2)}{6} + 7T(n/2) & \text{otherwise}
\end{cases}$$
(b) Consider the following method.

```
public static int g(n) {
    if (n <= 1) {
        return 1000;
    }
    if (g(n / 3) > 5) {
        for (int i = 0; i < n; i++) {
            System.out.println("Hello");
        }
        return 5 * g(n / 3);
    } else {
        for (int i = 0; i < n * n; i++) {
            System.out.println("World");
        }
        return 4 * g(n / 3);
    }
}
```

(i) Find a recurrence $S(n)$ modeling the worst-case runtime of $g(n)$.

Solution:

\[
S(n) = \begin{cases}
1 & \text{When } n \leq 1 \\
2S(n/3) + n & \text{Otherwise}
\end{cases}
\]

Important: note that the if statement contains a recursive call that must be evaluated for $n > 1$.

(ii) Find a recurrence $X(n)$ modeling the returned integer output of $g(n)$.

Solution:

\[
X(n) = \begin{cases}
1000 & \text{When } n \leq 1 \\
5T(n/3) & \text{Otherwise}
\end{cases}
\]

(iii) Find a recurrence $P(n)$ modeling the printed output of $g(n)$.

Solution:

\[
P(n) = 2P(n/3) + n
\]
(c) Consider the following set of recursive methods.

```java
public int test(int n) {
    IDictionary<Integer, Integer> dict = new AvlDictionary<>();
    populate(n, dict);
    int counter = 0;
    for (int i = 0; i < n; i++) {
        counter += dict.get(i);
    }
    return counter;
}

private void populate(int k, IDictionary<Integer, Integer> dict) {
    if (k == 0) {
        dict.put(0, k);
    } else {
        for (int i = 0; i < k; i++) {
            dict.put(i, i);
        }
        populate(k / 2, dict);
    }
}
```

(i) Write a mathematical function representing the worst-case runtime of test.

You should write two functions, one for the runtime of `test` and one for the runtime of `populate`.

Solution:

The runtime of the `populate` method is:

\[
P(k) = \begin{cases}
\log(N) & \text{When } k = 0 \\
 k \log(N) + P(k/2) & \text{Otherwise}
\end{cases}
\]

Here, \(N\) is the maximum possible value of \(n\).

The runtime of the `test` method is then \(R(n) = P(n) + n\log(n)\).

(ii) Write a mathematical function \(Y(n)\) representing the returned integer output of test.

Solution:

\[
Y(n) = \frac{n(n-1)}{2}
\]
5. AVL Trees

(a) Draw an AVL Tree as each of the following keys are added in the order given. Show intermediate steps.

(i) \{13, 17, 14, 19, 22, 18, 11, 10, 21\}

Solution:

![AVL Tree](image1)

(ii) \{1, 2, 3, 4, 5, 6\}

Solution:

![AVL Tree](image2)

(b) Identify if the following trees are AVL trees. Explain your answer.

(i) Tree 1

Solution:

No, does not meet the balance property.
(ii) Tree 2

Solution:
No, does not meet the BST property. 12 is not greater than 18.

(iii) Tree 3

Solution:
Yes, it satisfies the balance and BST properties.
6. AVL trees

What is the minimum number of nodes in an AVL tree, given the following heights? Draw a picture of such a tree. (Reminder: an AVL tree’s height is 0 for a tree with only 1 node in it!)

(a) 1

Solution:
Minimum number of nodes is 2, for a height of 1.

(b) 2

Solution:
Minimum number of nodes is 4, for a height of 2.
7. Algorithm Design

(a) Given a binary search tree, describe how you could convert it into an AVL tree with worst-case time $O(n \log(n))$. What is the best case runtime of your algorithm?

Solution:

Since we already have a BST, we can do an in-order traversal on the tree to get a sorted array of nodes. We could now simply insert all of these nodes back into an AVL tree using rotations which would give us an $O(n \log(n))$ runtime.

(b) Given an AVL tree, describe how would you do a level order tree traversal. What is the worst-case runtime of your algorithm?

Solution:

Since an AVL tree is just a balanced BST, we can use a queue to add each node we visit. As we dequeue each node, we will add it’s children to the queue. We would get an $O(n)$ runtime.
8. Recurrences

(a) For the following recurrence, use the unfolding method to first convert the recurrence into a summation. Then, find a big-bound on the function in terms of n. Assume all division operations are integer division.

\[T(n) = \begin{cases}
1 & \text{if } n = 0 \\
2T(n/3) + n & \text{otherwise}
\end{cases} \]

Solution:

In order to determine what this expression looks like as a summation, it helps to first partially unroll it. When unfolding a recurrence like this it helps to

(i) Distribute the 2 (coefficient of the recursive call) at each step, to avoid having too many parentheses within parentheses.

(ii) \[T(n) = n + 2T\left(\frac{n}{3}\right) + n = n + \frac{2n}{3} + 2^2T\left(\frac{n}{3^2}\right) = n + \frac{2n}{3} + 2^2\left(\frac{n}{3^2}\right) + 2^3T\left(\frac{n}{3^2}\right) = n + \frac{2n}{3} + 2^2\left(\frac{n}{3^2}\right) + 2^3\left(\frac{n}{3^3}\right) + 2^4T\left(\frac{n}{3^3}\right) \]

We can start to see the pattern now: our summation is roughly of the form

\[n + \frac{2n}{3} + \frac{2^2n}{3^2} + \cdots + \frac{2^i}{3^{i-1}} + 2^i\left(\frac{n}{3^i}\right) \]

Choosing \(i = \log_3(n) \) buts us in the base case, and we get:

\[T(n) = n + \frac{2n}{3} + \frac{2^2n}{3^2} + \cdots + \frac{2^i}{3^{i-1}} + 2^i\left(\frac{n}{3^i}\right) \]

Notice that unlike with most of our previous recurrences, the term for the base case is not a constant. Because each of our recursive calls makes two other recursive calls, we hit the base case more than once (in fact \(2^{\log_3(n)} \) times).

Rewriting to be in summation form:

\[T(n) = \sum_{i=0}^{\log_3(n) - 1} \frac{2^i n}{3^i} + 2^{\log_3 n} \]

Let’s handle the summation first. We could evaluate the summation exactly, but that would be a bit tedious. Instead, let’s show that it evaluates to some constant (which we can suppress in the \(\Theta() \) at the end). Each term is positive, and the first is \(2/3, \) so it is at least some constant. On the other hand, if instead of stopping when \(i = \log_3(n) - 1, \) we kept going to \(i = \infty, \) we would get an infinite geometric series, whose closed
form is \(\frac{1}{1-\frac{2}{3}} = 3 \). Since this infinite series is larger than the finite one we care about, our series sums to at most 3. Thus it is between 2/3 and 3, and definitely must be a constant.

Now let's figure out \(2^{\log_3 n} \). Using logarithm identity 4 of the math review, we can change that number to \(n^{\log_3(2)} \). So we have that

\[
T(n) = \Theta(n) + n^{\log_3(2)}
\]

Which of those is the dominating term? \(\log_3(2) \) is the number which you raise 3 to to get 2. Since 3 is less than 2, \(\log_3(2) < 1 \). So the first term dominates and \(\Theta(n) \) is our final answer.

9. Modeling recursive functions

Consider the following recursive function. You may assume that the input will be a multiple of 3.

```java
public int test(int n) {
    if (n <= 6) {
        return 2;
    } else {
        int curr = 0;
        for (int i = 0; i < n * n; i++) {
            curr += 1;
        }
        return curr + test(n - 3);
    }
}
```

(a) Write a recurrence modeling the worst-case runtime of test.

Solution:

\[
T(n) = \begin{cases}
1 & \text{When } n \leq 6 \\
 n^2 + T(n-3) & \text{Otherwise}
\end{cases}
\]

(b) Unfold the recurrence into a summation (for \(n \geq 6 \)).

Solution:

\[
1 + \sum_{i=3}^{n/3} (3i)^2
\]

Modeling this recurrence correctly is slightly challenging because we want to decrease \(n \) in increments of 3.

To do this, what we do is set the summation bounds to go up to \(n/3 \) instead of \(n \), and multiply \(i \) on the inside by 3, simulating changing \(i \) in those increments.

We then also set the lower summation bound to be 3 instead of 0 or 1. That way, our summation will only consider numbers in the range 9 to \(n \) – if we set \(i = 2 \) or lower, our summation would double-count \(n \leq 6 \), which should be handled by the base case.

Note: our model only works if \(n \) is a multiple of 3.
(c) Simplify the summation into a closed form (for \(n \geq 6 \)).

Solution:

\[
1 + \sum_{i=3}^{n/3} (3i)^2 = 1 + \sum_{i=0}^{n/3} (3i)^2 - \sum_{i=0}^{2} (3i)^2 \\
= 1 + 9 \sum_{i=0}^{n/3} i^2 - \sum_{i=0}^{2} (3i)^2 \\
= 1 + 9 \sum_{i=0}^{n/3} i^2 - (0 + 9 + 36) \\
= 9 \frac{n^3}{3} \left(\frac{n}{3} + 1 \right) \left(\frac{2n}{3} + 1 \right) - 44
\]

A “closed form”, within the context of this class, is just any expression that does not contain a summation or is recursive. This means we can stop here without needing to further simplify the expression.

That said, if you wanted to continue simplifying, we could:

\[
9 \frac{n^3}{3} \left(\frac{n}{3} + 1 \right) \left(\frac{2n}{3} + 1 \right) - 44 = \frac{9}{6} \left(\frac{n^3}{3} \left(\frac{n}{3} + 1 \right) \left(\frac{2n}{3} + 1 \right) \right) - 44 \\
= \frac{1}{2} \left(\frac{n^3}{3} \left(\frac{n}{3} + 1 \right) \left(\frac{2n}{3} + 1 \right) \right) - 44 \\
= \frac{1}{2} \left(\frac{n^3}{3} \left(\frac{2n^2}{3} + n + 1 \right) \right) - 44 \\
= \frac{1}{9} n^3 + \frac{1}{2} n^2 + \frac{1}{2} n - 44
\]

10. AVL Trees

(a) Is there a relationship between an AVL tree's height, and its minimum or maximum number of nodes? If so, what is it?

Solution:

There is a relationship for the minimum number of nodes, and it’s recursive:

\[
S_{\text{min}}(h) = \begin{cases}
1 & \text{when } h = 0 \\
2 & \text{when } h = 1 \\
1 + S_{\text{min}}(h - 2) + S_{\text{min}}(h - 1) & \text{otherwise}
\end{cases}
\]

The maximum number of nodes is a little more straightforward: level \(i \) of the tree can have up to \(2^i \) nodes in it. Summing across all levels we get:

\[
S_{\text{max}}(h) = 2^{h+1} - 1
\]
(b) Write a method `isAVLTree` to check if a given tree (which is guaranteed to be a valid BST) is a valid AVL tree. If it helps, you may write this method for this tree class, `HeightTree`, which keeps track of the height of a tree at each node:

```java
public class HeightTree {
    private IntHeightNode overallRoot;

    // constructors and other methods omitted for clarity

    private class IntHeightNode {
        public int data;
        public int height;
        public IntHeightNode left;
        public IntHeightNode right;

        // constructors omitted for clarity
    }

    Solution:
    public boolean isAVLTree() {
        return isAVLTree(overallRoot);
    }

    private boolean isAVLTree(IntHeightNode root) {
        if (root == null || (root.left == null && root.right == null)) {
            return true;
        } else if (Math.abs(root.left.height - root.right.height) > 1) {
            return false;
        } else {
            return isAVLTree(root.left) && isAVLTree(root.right);
        }
    }
}
```

(c) Now write `isAVLTree` without assuming that the tree is a valid BST.

Solution:

```java
public boolean isAVLTree() {
    return isAVLTree(overallRoot);
}

private boolean isAVLTree(IntHeightNode root) {
    if (root == null || (root.left == null && root.right == null)) {
        return true;
    } else if (Math.abs(root.left.height - root.right.height) > 1) {
        return false;
    } else {
        return isAVLTree(root.left) && isAVLTree(root.right);
    }
}
```

TODO
(d) Now write isAVLTree for the IntTree class (you may assume again that the tree is guaranteed to be a valid BST).

Solution:

```java
public boolean isAVLTree() {
    return isAVLTree(overallRoot);
}

private boolean isAVLTree(IntTreeNode root) {
    if (root == null || (root.left == null && root.right == null)) {
        return true;
    } else {
        return Math.abs(height(root.left) - height(root.right)) <= 1 &&
                isAVLTree(root.left) && isAVLTree(root.right);
    }
}

private int height(IntTreeNode root) {
    if (root == null || (root.left == null && root.right == null)) {
        return 0;
    } else {
        return 1 + Math.max(height(root.left), height(root.right));
    }
}
```