
Homework 03: AVL trees, algorithm design and analysis
Due date: April 27, 2018 at 11:59 pm
Instructions:
Submit a typed or neatly handwritten scan of your responses on Canvas in PDF format.

Note: you will need to submit a separate PDF per each section.

1. AVL tree rotations

Rather then submitting anything on Canvas, you will complete this exercise using an online tool located here:

https://grinch.cs.washington.edu/cse373/avl

The online tool will automatically update your grade on Canvas once you complete the exercise.

2. Simplifying expressions

Submit your answers here: https://canvas.uw.edu/courses/1199402/assignments/4229805

(a) Simplify the following summation to produce a closed form. Show your work, clearly stating when you apply
each summation identity.

n−1∑
i=0

i−1∑
j=0

j +
n2−1∑
j=0

5i


(b) Convert the following recurrence into a summation by applying the unfolding technique discussed in lecture.

Then, simplify your summation to find a closed form. You may assume that the initial input n is always > 7.

E(n) =

{
4 When n ≤ 7

E(n− 1) + n Otherwise

3. Asymptotic analysis: mathematically

Submit your answers here: https://canvas.uw.edu/courses/1199402/assignments/4229806

(a) Show that 6n+n log(n) ∈ Ω(10 log(n)) is true by finding a c and n0 that satisfies the definition of “dominates”
and big-Ω. Please show your work.

(b) Show that log3(n) ∈ O (log5(n)) by finding a c and n0 that satisfies the definition of “dominated by” and big-O.
Please show your work. As a hint, you will need to use the change-of-base logarithm identity somewhere.

1

https://grinch.cs.washington.edu/cse373/avl
https://canvas.uw.edu/courses/1199402/assignments/4229805
https://canvas.uw.edu/courses/1199402/assignments/4229806


4. Asymptotic analysis: visually

Submit your answers here: https://canvas.uw.edu/courses/1199402/assignments/4229807

For each of the following plots, provide a tight big-O bound, a tight big-Ω bound, and a big-Θ bound. You do not
need to show your work; just list the bounds. If a particular bound doesn’t exist for a given plot, briefly explain
why. Assume that the plotted functions continue to follow the same trend shown in the plots as x increases. Each
provided bound must either be a constant or a simple polynomial, from the following possible answers.

n2, 1, n, log(n), n!, 1/n

(a)

5 10 15 20 25 30

5

10

x

f(x)

(b)

5 10 15 20 25 30

5

10

x

f(x)

(c)

5 10 15 20 25 30

5

10

x

f(x)

(d)

5 10 15 20 25 30

5

10

x

f(x)

2

https://canvas.uw.edu/courses/1199402/assignments/4229807


(e)

5 10 15 20 25 30

5

10

x

f(x)

5. Modeling code

Submit your answers here: https://canvas.uw.edu/courses/1199402/assignments/4229809

(a) Construct a mathematical function T1(n)modeling the approximate worst-case runtime of the mystery1method.
Your answer should be written as a summation. You do not need to find the closed form of this summation.

public static int mystery1(int n) {

int out = 0;

for (int i = 0; i < n; i++) {

if (i % 5 == 0) {

for (int j = 0; j < i; j++) {

out += 2;

}

}

}

return out;

}

(b) Construct a mathematical function T2(n)modeling the approximate worst-case runtime of the mystery2method.
Your answer should be a recurrence. You do not need to find the closed form of this recurrence.

public static int mystery2(int n) {

if (n == 0) {

return 3;

} else {

return mystery2(n / 2) + n;

}

}

3

https://canvas.uw.edu/courses/1199402/assignments/4229809


6. Algorithm design: merge

Submit your answers here: https://canvas.uw.edu/courses/1199402/assignments/4229810

Suppose we are given two sorted arrays containing comparable elements (such as integers or strings). Our goal is
to design an algorithm that returns a new array containing all items from both arrays in sorted order. The input
arrays should remain unmodified. The algorithm should throw an exception when given invalid input.

For example, suppose we receive as input the arrays [-5, 0, 0, 2] and [-1, 2, 3]. The output should be the
array [-5, -1, 0, 0, 2, 2, 3].

(a) Write an English description or high-level pseudocode describing an algorithm to perform this task. Note:
do NOT submit Java code. We want to see a high-level description of the algorithm, not a low-level one.

Please see the following link for more details on what an acceptable response to this question should look like.
https://courses.cs.washington.edu/courses/cse373/18sp/resources/explaining-algorithms.html

(b) Provide a tight big-Θ bound of the worst-case runtime of your algorithm. Write your answer in terms of n and
m, where n is the length of the first input array and m is the length of the second. Briefly justify your answer.

(c) List at least four distinct kinds of inputs you would try passing into your merge algorithm to test it. For each
input, also list the expected outcome (assuming the merge algorithm was implemented correctly). Be sure to
think about different edge cases.

The following link may be a good source of inspiration when coming up with test inputs:
https://courses.cs.washington.edu/courses/cse373/18sp/resources/tips-on-testing-code.html

4

https://canvas.uw.edu/courses/1199402/assignments/4229810
https://courses.cs.washington.edu/courses/cse373/18sp/resources/explaining-algorithms.html
https://courses.cs.washington.edu/courses/cse373/18sp/resources/tips-on-testing-code.html

	AVL tree rotations
	Simplifying expressions
	Asymptotic analysis: mathematically
	Asymptotic analysis: visually
	Modeling code
	Algorithm design: merge

