
Name & Student Number:

- 1. Answer each of the following questions as True or False.
 - (a) A MST contains a cycle. _____
 - (b) If we remove an edge from a MST, the resulting subgraph is still a MST.
 - (c) If we add an edge to a MST, the resulting subgraph is still a MST._____
 - (d) If there are V vertices in a given graph, a MST of that graph contains |V|-1 edges.
 - (e) Every MST is a sparse graph._____
- 2. Following is the pseudocode for Kruskal's algorithm to find a MST.

```
1: function Kruskal(Graph G)
      initialize each vertex to be a component
       sort all edges by weight
3:
       for each edge (u, v) in sorted order do
 4:
          if u and v are in different components then
 5:
             add edge (u,v) to the MST
6:
             update u and v to be in the same component
 7:
 8:
          end if
       end for
9:
10: end function
```

(a) Execute Kruskal's algorithm on the following graph. Fill the table.

Step	Components	Edge	Include?
1	{A} {B} {C} {D} {E} {F}	A, B	Yes
2	{A, B} {C} {D} {E} {F}	B, C	
3			
4			
5			
6			
7			
8			
9			
10			
11			

(b) In this graph there are 6 vertices and 11 edges, and the for loop in the above pseudocode iterates 11 times, a few more times after the MST is found. How would you optimize the pseudocode so the for loop terminates early, as soon as a valid MST is found. Annotate the given pseudocode to add/edit lines.

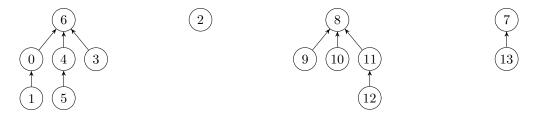


Figure 1: Disjoin-set. Rank of trees in the forest (from left): 2, 0, 2, 1.

3. Consider the disjoin-set shown in Figure ??

What would be the result of the following calls on union if we add the "union-by-rank" optimization. Draw the forest at each stage with corresponding ranks for each tree

i. union(2, 13)

ii. union(4, 12)

iii. union(2, 8)