
P vs. NP Data Structures and
Algorithms

CSE 373 - 18AU 1

Goals for today
Define “P, NP, and NP-complete”
Explain the P vs. NP problem
-why it’s the biggest open problem in CS.
-And what to do when a problem you want to solve is “NP-complete”

CSE 373 - 18AU 2

Problem For Today
You just started a job at Amazon.
They give you the following problem:

You have a weighted, directed graph, where each vertex is a place to deliver a package.
One vertex is marked as the amazon warehouse.

How do you direct the truck to deliver all the packages, and return to the warehouse, using
the least amount of gas?
This is NOT just finding a minimum spanning tree.

Keep this problem in mind, today we’ll discuss why you shouldn’t hope to solve it, and what
you should do instead.

CSE 373 - 18AU 3

Taking a Big Step Back
What has this quarter been about?
We’ve taken problems you probably knew how to solve slowly,
And we figured out how to solve them faster.

In some sense, that’s the job of a computer scientist.
Figure out how to take our problems
And make the computer do the hard work for us.

CSE 373 - 18AU 4

Taking a Big Step Back
Let’s take a big step back, and try to break problems into two types:
Those for which a computer might be able to help.
And those which would take so long to solve even on a computer we
wouldn’t expect to solve them.

There are problems we could solve in finite time…but we’ll all be long
dead before our computer tells us the answer.

CSE 373 - 18AU 5

Efficient
We’ll consider a problem “efficiently solvable” if it has a polynomial time
algorithm.
I.e. an algorithm that runs in time !(#$) where & is a constant.
Are these algorithms always actually efficient?
Well………no

Your #'((((algorithm or even your 2*+
++
⋅ #- algorithm probably aren’t

going to finish anytime soon.
But these edge cases are rare, and polynomial time is good as a low bar
-If we can’t even find an #'((((algorithm, we should probably rethink
our strategy

CSE 373 - 18AU 6

Decision Problems
Let’s go back to dividing problems into solvable/not solvable.
For today, we’re going to talk about decision problems.
Problems that have a “yes” or “no” answer.
Why?
Theory reasons (ask me later).
But it’s not too bad
-most problems can be rephrased as very similar decision problems.

E.g. instead of “find the shortest path from s to t” ask
Is there a path from s to t of length at most !?

CSE 373 - 18AU 7

P

The set of all decision problems that have an algorithm that runs
in time ! "# for some constant $.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”
A set of problems that can be solved under some limitations (e.g. with
some amount of memory or in some amount of time).

CSE 373 - 18AU 8

I’ll know it when I see it.
Another class of problems we want to talk about.
“I’ll know it when I see it” Problems.

Decision Problems such that:
If the answer is YES, you can prove the answer is yes by
-Being given a “proof” or a “certificate”
-Verifying that certificate in polynomial time.

What certificate would be convenient for short paths?
-The path itself. Easy to check the path is really in the graph and really
short.

CSE 373 - 18AU 9

I’ll know it when I see it.
More formally,

It’s a common misconception that NP stands for “not polynomial”
Please never ever ever ever say that.
Please.
Every time you do a theoretical computer scientist sheds a single tear.
(That theoretical computer scientist is me)

The set of all decision problems such that if the answer is YES,
there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

CSE 373 - 18AU 10

NP
We can verify YES instances of NP problems efficiently, but can we
decide whether the answer is YES or NO efficiently?

I.e. can you bootstrap the ability to check a certificate into the ability to
find a certificate?

We don’t know.
This is the P vs. NP problem.

CSE 373 - 18AU 11

P vs. NP

Claim: P is a subset of NP, i.e. every problem in P is also in NP
(do you see why?)

The set of all decision problems such that if the answer is YES,
there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

The set of all decision problems that have an algorithm that runs
in time ! "# for some constant $.

P (stands for “Polynomial”)

CSE 373 - 18AU 12

P vs. NP

No one knows the answer to this problem.
In fact, it’s the biggest open problem in Computer Science.

Are P and NP the same complexity class?
That is, can every problem that can be verified in polynomial time
also be solved in polynomial time.

P vs. NP

CSE 373 - 18AU 13

Hard Problems
Let’s say we want to prove that some problem in NP needs exponential
time (i.e. that P is not equal to NP).
Ideally we’d start with a really hard problem in NP.
What is the hardest problem in NP?
What does it mean to be a hard problem?

CSE 373 - 18AU 14

s
u

v
t2

2

2

1

1
s

u

v

t

s
u

v
t 2

s
u

v
t2

2

2

1

1
2

Transform Input

Unweighted Shortest Paths

Transform Output

Using an algorithm for Problem B to solve Problem A.
Reduction (informally)

CSE 373 - 18AU 15

NP-Complete
Let’s say we want to prove that some problem in NP needs exponential
time (i.e. that P is not equal to NP).
Ideally we’d start with a really hard problem in NP.
What is the hardest problem in NP?
What does it mean to be a hard problem?

We say that a problem B is “NP-complete” if B is in NP and
for all problems A in NP, A reduces to B.

NP-complete

CSE 373 - 18AU 16

NP-Completeness
An NP-complete problem is a universal language for encoding “I’ll know
it when I see it” problems.
If you find an efficient algorithm for an NP-complete problem, you have
an algorithm for every problem in NP

3-SAT is NP-complete
Cook-Levin Theorem (1971)

CSE 373 - 18AU 17

NP-Complete Problems
But Wait! There’s more!

A lot of problems are
NP-complete

Karp’s Theorem (1972)

CSE 373 - 18AU 18

NP-Complete Problems
But Wait! There’s more!

By 1979, at least 300 problems had been
proven NP-complete.

Garey and Johnson put a list of all the NP-
complete problems they could find in this
textbook.

Took them almost 100 pages to just list them
all.

No one has made a comprehensive list since.

CSE 373 - 18AU 19

NP-Complete Problems
But Wait! There’s more!

In the last month, mathematicians and computer scientists have put
papers on the arXiv claiming to show (at least) 11 more problems are
NP-complete.

There are literally thousands of NP-complete problems known.
And some of them look weirdly similar to problems we’ve already
studied.

CSE 373 - 18AU 20

Examples

Given a directed graph,
report if there is a path from
s to t of length at most !.

Short Path
Given a directed graph,
report if there is a path from
s to t of length at least !.

Long Path
In P NP-Complete

There are literally thousands of NP-complete problems.
And some of them look weirdly similar to problems we do know
efficient algorithms for.

CSE 373 - 18AU 21

Examples

Given a weighted graph, find
a spanning tree (a set of
edges that connect all
vertices) of weight at most !.

Light Spanning Tree
Given a weighted graph, find
a tour (a walk that visits every
vertex and returns to its start)
of weight at most !.

Traveling Salesperson

The electric company just needs a greedy algorithm to lay its wires.
Amazon doesn’t know a way to optimally route its delivery trucks.

In P NP-Complete

CSE 373 - 18AU 22

Dealing with NP-Completeness
Option 1: Maybe it’s a special case we understand
Maybe you don’t need to solve the general problem, just a special case

Option 2: Maybe it’s a special case we don’t understand (yet)
There are algorithms that are known to run quickly on “nice” instances.
Maybe your problem has one of those.
One approach: Turn your problem into a SAT instance, find a solver and
cross your fingers.

CSE 373 - 18AU 23

Dealing with NP-Completeness
Option 3: Approximation Algorithms
You might not be able to get an exact answer, but you might be able to
get close.

Given a weighted graph, find a tour (a walk that visits every vertex
and returns to its start) of minimum weight.

Optimization version of Traveling Salesperson

Algorithm:
Find a minimum spanning tree.
Have the tour follow the visitation order of a DFS of the spanning tree.
Theorem: This tour is at most twice as long as the best one.

CSE 373 - 18AU 24

Why should you care about P vs. NP
Most computer scientists are convinced that P≠NP.
Why should you care about this problem?

It’s your chance for:
$1,000,000. The Clay Mathematics Institute will give $1,000,000 to
whoever solves P vs. NP (or any of the 5 remaining problems they listed)
To get a Turing Award

CSE 373 - 18AU 25

Why should you care about P vs. NP
Most computer scientists are convinced that P≠NP.
Why should you care about this problem?

It’s your chance for:
$1,000,000. The Clay Mathematics Institute will give $1,000,000 to
whoever solves P vs. NP (or any of the 5 remaining problems they listed)
To get a Turing Award the Turing Award renamed after you.

CSE 373 - 18AU 26

Why Should You Care if P=NP?
Suppose P=NP.
Specifically that we found a genuinely in-practice efficient algorithm for
an NP-complete problem. What would you do?
-$1,000,000 from the Clay Math Institute obviously, but what’s next?

CSE 373 - 18AU 27

Why Should You Care if P=NP?
We found a genuinely in-practice efficient algorithm for an NP-

complete problem. What would you do?

-Another $5,000,000 from the Clay Math Institute

-Put mathematicians out of work.

-Decrypt (essentially) all current internet communication.

-No more secure online shopping or online banking or online

messaging…or online anything.

A world where P=NP is a very very different place from the world we

live in now.

CSE 373 - 18AU 28

Why Should You Care if P≠NP?
We already expect P≠NP. Why should you care when we finally prove it?
P≠NP says something fundamental about the universe.
For some questions there is not a clever way to find the right answer
-Even though you’ll know it when you see it.
There is actually a way to obscure information, so it cannot be found
quickly no matter how clever you are.

CSE 373 - 18AU 29

Why Should You Care if P≠NP?
To prove P≠NP we need to better understand the differences between
problems.
-Why do some problems allow easy solutions and others don’t?
-What is the structure of these problems?
We don’t care about P vs NP just because it has a huge effect about
what the world looks like.
We will learn a lot about computation along the way.

CSE 373 - 18AU 30

