More on disjoint sets

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker
Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

mailto:shri@cs.washington.edu

Today

Revisiting Kruskal’s algorithm (with union/find operations)
Array representation of a disjoint set

Review: Answering algorithm design questions

CSE373 AU 18 2

Set and union

Collection of elements.

We want to identify all elements in a set with one value, so
that findSet(x) == findSet(y) if x and y in one set.

In tree structure, every node has one root.

So use a tree structure for our set, and identified the set as
the root element

Combine the two trees

CSE373 AU 18 3

Improving union
Trees can be unbalanced

let rank(x) be a number representing the upper bound of the height of x so rank(x) = height(x)
Keep track of rank of all trees

When unioning make the tree with larger rank the root

If it’s a tie, pick one randomly and increase rank by one

rank = 1 rank = 2 rank = O rank = 0
‘ 4
5 1 3
——
5

CSE373 AU 18

Improving findSet()

Every time we call findSet() you must traverse all the levels of the tree to find
representative

Collapse tree into fewer levels by updating parent pointer of each node you visit
Whenever you call findSet() update each node you touch to point directly to overallRoot

rank = 3 rank = 3

findSet (5) a : N 3 N\

~
__’_>

N NG /

CSE373 AU 18

Optimized disjoint set runtime

makeSet(x)

With Optimizations 0(1)

findSet(x)

With Optimizations Worst case: O(logn)

union(x, y)

With Optimizations Worst case: O(logn)

CSE373 AU 18 6

Worksheet question 1

1: function Kruskal(Graph G)

2 initialize each vertex to be a component

3 sort all edges by weight

4 for each edge (u, v) in sorted order do

5: if u and v are in different components then

6 add edge (u,v) to the MST

7 update u and v to be in the same component
8 end if

9: end for

10: end function

CSE373 AU 18 7

Worksheet question 1

1: function Kruskal(Graph G)

2 initialize a disjoint set; call makeSet() on each vertex
3 sort all edges by weight

4: for each edge (u, v) in sorted order do

5: if findSet(u) # findSet(v) then

6: add edge (u,v) to the MST

7 union(u, v)

8 end if

9: end for

10: end function

CSE373 AU 18 8

Implementation

Use Nodes?

In modern Java (assuming 64-bit JDK) each object takes about 32 bytes
int field takes 4 bytes
Pointer takes 8 bytes
Overhead ~ 16 bytes
Adds up to 28, but we must partition in multiples of 8 => 32 bytes

Use arrays instead!
Make index of the array be the vertex number

Either directly to store ints or representationally
We implement makeSet(x) so that we choose the representative

Make element in the array the index of the parent

CSE373 AU 18

Array implementation

rank = 0 rank = 3 rank = 3

3 4 5 7 10 13 14 16 17

CSE373 AU 18 10

Array implementation

rank = 0 rank = 3 rank = 3

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18

Store (rank * -1) - 1

CSE373 AU 18 11

Worksheet question 2

Consider the following disjoint set. Assume that (from left) the first tree has rank 3, the second has
rank 0, the third has rank 1, and the last tree has rank 1.

Write the array representation of this disjoint set in the array below.

0 1 2 3 4 5) 6 7 8 9 10 11 12 13 14 15

CSE373 AU 18

12

Array method implementation

makeSet(x)
add new value to array with a rank of -1
findSet(x)

Jump into array at index/value you’re looking for, jump to parent based on element at that index,
continue until you hit negative number

union(x, y)

findSet(x) and findSet(y) to decide who has larger rank, update element to represent new parent
as appropriate

CSE373 AU 18 13

Graph Review

Graph Definitions/Vocabulary
Vertices, Edges
Directed/undirected
Weighted
Etc...

Graph Traversals
Breadth First Search

Depth First Search

Finding Shortest Path

Dijkstra’s
Topological Sort, Strongly connected components
Minimum Spanning Trees

Primm’s

Kruskal’s

Disjoint Sets
Implementing Kruskal’s

CSE373 AU 18 14

Next week

Monday: Guest lecture on Technical Interviews
Wednesday: P vs. NP

Thursday (Section): Final review session
Friday: Final review session

Sunday (tentative): TA lead extra review session

CSE373 AU 18 15

Topics covered in final

- Everything we learned in the class

- Final is cumulative with more focus on topics we covered after midterm.
So there will be questions on the topics we covered before midterm as well.

- Topics not covered in final
B-Trees
Java generics and Java interfaces

Java Syntax

Advice:
- Make use of exams from previous terms. A practice exam will be posted on Monday.
- Review section handouts for how to write good answers (particularly algorithm design questions)

- Finish HW7 early so you can focus on Final.

CSE373 AU 18 16

Worksheet question 3

Suppose you are given a connected graph G. Describe how you would figure out if the graph has
a cycle.

CSE373 AU 18 17

Worksheet question 3

Suppose you are given a connected graph G. Describe how you would figure out if the graph has
a cycle.

Run DFS but keep track of vertices in the stack.

If we hit a vertex that is already in the stack, then there is a cycle in the graph.

(Another solution is using topological sort, which is a similar idea, but it works only for directed
graphs.

CSE373 AU 18 18

