CSE 373: Data Structures and Algorithms

Disjoint Sets

Autumn 2018

Shrirang (Shri) Mare shri@cs.washington.edu

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

Announcements

Final exam info (logistics, topics covered, and practice material) is on course website.

Homework 6 is due this Friday at **noon**.

Homework 7 will be posted this Friday evening.

- Fill out the team sign up form by tomorrow 5pm to get the repo in time.
- Fill out the partner pool form by tomorrow 5pm to get assigned to a partner.

Today

Trees and Forests

Kruskal's algorithm

Disjoint Set ADT

Trees and Forests

A tree is an undirected, connected, and acyclic graph.

A graph, however, can have unconnected vertices, or multiple trees.

Collection of trees is a called a forest.

A forest is any undirected and acyclic graph.

- By definition a tree is a forest

Worksheet question 1

Review

Delges on -1

E & [] 1

Review

Worksheet question 2a

Step	Components	Edge	Include?
1	{ a } { B } { C } { E { F }	AB	7e8
2	SABG 263 Eb3 -11-	DC	Y & 8
3	3A, B& 3C, D} SEJ SEJ	EF	Yes
4	E, F3	As, C	Yes
7	3A,B,C,D} {E,F}	D, F	19
	SA,B, C, D, E,7}	A,D	No
>	C		N7 5
			200
			09
			No
			No

CSE 373 AU 18


```
t voli le l'esses Accepted L' (y) = next Mintegel)

en elgs Accepted t';

ent
1: function Kruskal(Graph G)
      initialize each vertex to be a component
       sort all edges by weight
 3:
      for each edge (u, v) in sorted order do
4:
          if u and v are in different components then
5:
             add edge (u,v) to the MST
6:
             update u and v to be in the same component
          end if
8:
      end for
9:
10: end function
```

Kruskal's Algorithm

```
1: function Kruskal(Graph G)
      initialize each vertex to be a component
2:
       sort all edges by weight
3:
      for each edge (u, v) in sorted order do
4:
          if u and v are in different components then
5:
             add edge (u,v) to the MST
6:
             update u and v to be in the same component
7:
          end if
8:
       end for
9:
10: end function
```

Minimum spanning forest

Question: Which algorithm (Prims or Kruskals) would you use to find a minimum spanning forest?

Disjoint Set ADT

New ADT

Set ADT

state

Set of elements

- Elements must be unique!
- No required order

Count of Elements

behavior

create(x) - creates a new set with a single
member, x
add(x) - adds x into set if it is unique, otherwise
add is ignored
remove(x) - removes x from set
size() - returns current number of elements
in set

Disjoint-Set ADT

state

Set of Sets

- Disjoint: Elements must be unique across sets
- No required order
- Each set has representative

Count of Sets

behavior

makeSet(x) – creates a new set within the disjoint set where the only member is x. Picks representative for set

findSet(x) - looks up the set containing element x, returns representative

union(x, y) – looks up set containing x and set containing y, combines two sets into one. Picks new representative for resulting set

Example

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

Example

new()

makeSet(a)

makeSet(b)

makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

union(b, d)

Example

new() makeSet(a) makeSet(b) makeSet(c)

makeSet(d)

makeSet(e)

findSet(a)

findSet(d)

union(a, c)

findSet(a) == findSet(c)

Implementation

Disjoint-Set ADT

state

Set of Sets

- Disjoint: Elements must be unique across sets
- No required order
- Each set has representative

Count of Sets

behavior

makeSet(x) — creates a new set within the disjoint set where the only member is x. Picks representative for set

findSet(x) — looks up the set containing element x, returns representative of that set

union(x, y) – looks up set containing x and set containing y, combines two sets into one. Picks new representative for resulting set

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

makeSet(x)-create a new
tree of size 1 and add to
our forest.

findSet(x)-locates node with x and moves up tree to find root

union(x, y)-append tree with y as a child of tree with x

TreeSet<E>

state

SetNode overallRoot

behavior

TreeSet(x)

add(x)

remove(x, y)

getRep()-returns data of
overallRoot

SetNode<E>

state

E data

Collection<SetNode>
children

behavior

SetNode(x)

addChild(x)

removeChild(x, y)

Implement makeSet(x)

makeSet(0)

makeSet(1)

makeSet(2)

makeSet(3)

makeSet(4)

makeSet(5)

Worst case runtime?

O(1)

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

makeSet(x)-create a new tree
of size 1 and add to our
forest

union(3, $\frac{5}{2}$)

0 1 2 3 4 5 -> -> -> -> ->

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

makeSet(x)-create a new tree
of size 1 and add to our
forest

union(3, 5)

union(2, 1)

0 1 2 3 4 5 -> -> -> -> ->

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

makeSet(x)-create a new tree
of size 1 and add to our
forest

union(3, 5)

union(2, 1)

union(2, 5)

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

makeSet(x)-create a new tree
of size 1 and add to our
forest

union(3, 5)

union(2, 1)

union(2, 5)

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

 $\label{eq:makeSet} \begin{array}{l} \text{makeSet}\,(\textbf{x})\,\text{-create a new tree} \\ \text{of size 1 and add to our} \\ \text{forest} \end{array}$

Implement findSet(x)

findSet(0)

findSet(3) $\frac{1}{2}$

findSet(5) 2

union(0,5)
-brdset(0)
-brdset(5)

Worst case runtime?

O(n)

Worst case runtime of union?

forest

TreeDisjointSet<E>

state

Collection<TreeSet> forest
Dictionary<NodeValues,
NodeLocations> nodeInventory

behavior

 $\begin{array}{lll} \text{makeSet} \, (\textbf{x}) \, \text{-create a new tree} \\ \text{of size 1 and add to our} \\ \text{forest} \end{array}$

Improving union

Problem: Trees can be unbalanced

Solution: Union-by-rank!

- let rank(x) be a number representing the upper bound of the height of x so rank(x) > = height(x)
- Keep track of rank of all trees
- When unioning make the tree with larger rank the root
- If it's a tie, pick one randomly and increase rank by one

Worksheet question 3

union(2, 8)

Given the following disjoint-set what would be the result of the following calls on union if we add the "union-by-rank" optimization. Draw the forest at each stage with corresponding ranks for each tree.

Worksheet question 3

Given the following disjoint-set what would be the result of the following calls on union if we add the "union-by-rank" optimization. Draw the forest at each stage with corresponding ranks for each tree.

union(2, 13)

union (4, 12)

union(2, 8)

Does this improve the worst case runtimes?

findSet is more likely to be O(log(n)) than O(n)

Improving findSet()

Problem: Every time we call findSet() you must traverse all the levels of the tree to find representative

Solution: Path Compression

- Collapse tree into fewer levels by updating parent pointer of each node you visit
- Whenever you call findSet() update each node you touch's parent pointer to point directly to overallRoot

findSet(5)

findSet(4)

Does this improve the worst case runtimes?

findSet is more likely to be O(1) than O(log(n))

