Disjoint Sets

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker
Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

mailto:shri@cs.washington.edu

Announcements

Final exam info (logistics, topics covered, and practice material) is on course website.
Homework 6 is due this Friday at noon.

Homework 7 will be posted this Friday evening.
Fill out the team sign up form by tomorrow 5pm to get the repo in time.
Fill out the partner pool form by tomorrow 5pm to get assigned to a partner.

CSE 373 AU 18

2

Today

Trees and Forests

Kruskal’s algorithm
Disjoint Set ADT

CSE 373 AU 18 3

Trees and Forests

A tree is an undirected, connected, and acyclic graph.
B S S

— 7

—

A graph, however, can have unconnected vertices, or mult

Collection of trees is a called a forest.

A forest is any undirected and acyclic graph.

—

By definition a tree is a forest

CSE 373 AU 18 4

Review

Worksheet question 1

Worksheet question 2a

Step Components Edge Include?
@ | . ! &%@3 5@%5%%% ey |4 B | we
: 5 iA 23 %c W FEgjp] |eF | 18

6 A gf/’/‘/f A&C ydﬁg

CSE 373 AU 18 €

Worksheet question 2b

1: function Kruskal(Graph G)

2 initialize each vertex to be a component K g PeeP

3 sort all edges by weight M

4: ch e V) in er do R,
Josx iF{l and v are in different components then Q}\%Q Aé&@fge

6: add edge (u,v) to the MST

8: end if

9: end for

10: end function

CSE 373 AU 18 7

Kruskal’s Algorithm

1: function Kruskal(Graph G)

2 initialize each vertex to be a component

3 sort all edges by weight

4 for each edge (u, v) in sorted order do

5: if u and v are in different components then

6 add edge (u,v) to the MST

7 update u and v to be in the same component
8 end if

9: end for

10: end function

CSE 373 AU 18 8

Minimum spanning forest

> C 5

Given a forest, 'nﬁ\a\set%nimum spanning trees for each tree in the g

f Torest.

- S

8

Question: Which algorithm (Prims or Kruskals) would you use to find a minimum spanning
forest?

CSE 373 AU 18 9

‘ Disjoint Set ADT

CSE 373 AU 18

New ADT

Set ADT

state

Set of elements
- Elements must be unique!
- No required order

Count of Elements

behavior

create(x) - creates a new set with a single
member, x

add(x) - adds x into set if it is unique, otherwise
add is ignored

remove(x) — removes x from set

size() — returns current number of elements
in set

N S TN
® @
ONNG

Disjoint-Set ADT

state

Set of Sets

- Disjoint: Elements must be unique across sets
- No required order

- Each set has representative

Count of Sets
behavior

makeSet(x) — creates a new set within the disjoint set where the only
member is x. Picks representative for set

findSet(x) — looks up the set containing element x, returns representative
ﬁ
=of that set

uwni:/n(gg y) — looks up set containing x and s

sef¥ into one. Picks new representativ

CSE 373 AU 18 "

Example

new()
makeSet(a)
makeSet(b)

(

(

makeSet(c)

makeSet(d
(

)
makeSet(e)
findSet(a

findSet(d

union(a, ¢)

e
) >

CSE 373 AU 18 12

Example

new()

makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
findSet(a
findSet(d
union(a, ¢)
union(b, d)

)
)

Rep: 1
b

Rep: 3
d

CSE 373 AU 18

13

Example

new() (ﬁj —
makeSet(a) re0) RZ |
makeSet(b) °)
makeSet(c) =

makeSet(d) Rep: 4

makeSet(e) -

findSet(a)

findSet(d)

union(a, ¢

af
union(b, d) %‘r\ﬂ@) 0

findSet(a) == findSet(c)
- > -
ﬁndSet(a)/é: flndSet(d) CSE 373 AU 18 14

Implementation

Disjoint-Set ADT

state
Set of Sets
- Disjoint: Elements must be unique
across sets
- No required order
- Each set has representative

Count of Sets
behavior

makeSet(x) — creates a new set within the
disjoint set where the only member is x.
Picks representative for set

findSet(x) — looks up the set containing
element x, returns representative of that
set

union(x, y) — looks up set containing x and

Picks new representative for resulting set

set containing y, combines two sets into one.

TreeDisjointSet<E>

state
Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodelInventory

behavior

makeSet (x) -create a new
tree of size 1 and add to
our forest

findSet (x) -locates node with
x and moves up tree to find
root

union (x, y)-append tree
with v as a child of tree
with x

state

SetNode overallRoot
behavior

TreeSet (x)

add (x)

remove (x, V)
getRep () ~returns data of

overallRoot

SetNode<E>

state
E data

Collection<SetNode>
children
behavior

SetNode (x)
addChild (x)

removeChild (x, vy)

CSE 373 AU 18

15

TreeDisjointSet<E>

Implement makeSet(x)

Dictionary<NodeValues,
forest NodeLocations> nodeInventory

makeSet (0) 0 1 2 3 4 5 makeSet (x) -create a new tree
of size 1 and add to our
makeSet (1) forest

findSet (x) -locates node with x
and moves up tree to find root

makeSet (2)

union(x, y)-append tree with y
as a child of tree with x

makeSet (3)

makeSet (4)

makeSet (5) 0 1 2 3 4

Worst case runtime?
O(1)

CSE 373 AU 18 16

TreeDisjointSet<E>

Implement union(x, y)

Dictionary<NodeValues,
forest NodeLocations> nodeInventory

union (3, 5) E] E] ' E] . @ makeSet (x) -create a new tree
-~ of size 1 and add to our
forest
findSet (x) -locates node with x
~ - and moves up tree to find root
union (x, y)-append tree with y
as a child of tree with x

CSE 373 AU 18 17

TreeDisjointSet<E>

Implement union(x, y)

Dictionary<NodeValues,
forest NodeLocations> nodeInventory

findSet (x) -locates node with x
5 and moves up tree to find root

)
union (3, 5) 2 3 4 makeSet (x) —create a new tree
of size 1 and add to our
union(2, 1’) forest

union(x, y)-append tree with y
as a child of tree with x

CSE 373 AU 18 18

Implement union(x, y)

forest
))
2 —~/////<E : ;%
1 5
— —
7 Z
0 1 5

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodeInventory

makeSet (x) —create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root
union (x, y)-append tree with y
as a child of tree with x

CSE 373 AU 18 19

Implement union(x, y)

forest
)
union (3, 5) 0 2
union (2, 1)
union (2, 5) I
5

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodeInventory

makeSet (x) —create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root
union (x, y)-append tree with y
as a child of tree with x

0O 1 2 3 4)

CSE 373 AU 18 20

TreeDisjointSet<E>

Collection<TreeSet> forest

Dictionary<NodeValues,
NodeLocations> nodeInventory

. M2
Implement flne

forest

findSet (0) 0

~

findSet (3) T

makeSet (x) —create a new tree
of size 1 and add to our
forest

findSet (x) -locates node with x
and moves up tree to find root

findSet (5) 2

union(x, y)-append tree with y
as a child of tree with x

ng Qm) x

\

<5
&
U
A
<

e =

N

w

~_
NN

Worst case runtime?

g

O(n
().
Worst case runtime of union?

O(n) CSE 373 AU 18 21

Improving union
Trees can be unbalanced

let rank(x) be a number representing the upper bound of the height of x so rank(x) >= height(x)
Keep track of rank of all trees

When unioning make the tree with larger rank the root

If it's a tie, pick one randomly and increase rank by one

rank = 0 rank = 2 rank = 0 rank = 1_ |
4 0 4
1 3 = -

CSE 373 AU 18 22

Worksheet question 3

Given the following disjoint-set what would be the result of the following calls on union if
we add the “union-by-rank” optimization. Draw the forest at each stage with corresponding

ranks for each tree. 2,
rapk=)2'_ ron% rank ZZ rank = L
7) 7 A~ N 4 ~)

6 2

- 8&\
T /
\ / 9 10 11 —13 g

union (2, 13)
union (4, 12)

union (2, 8)

23
CSE 373 AU 18

Worksheet question 3

Given the following disjoint-set what would be the result of the following calls on union if

we add the “union-by-rank” optimization. Draw the forest at each stage with corresponding

ranks for each tree.

rank = 3

-

union (2, 13) \\l

8

~

11 7

13 2

union (4, 12)
union (2, 8)

Does this improve the worst case runtimes?

findSet is more likely to be O(log(n)) than O(n)

CSE 373 AU 18

24

Improving findSet()

Every time we call findSet() you must traverse all the levels of the tree to find

representative =

Collapse tree into fewer levels by updating parent pointer of each node you visit
Whenever you call findSet() update each node you touch'’s parent pointer to point directly to overallRoot

rank = 2

findSet (5)

findSet (4)
Does this improve the
worst case runtimes?

findSet is more likely to
be O(1) than O(log(n))

CSE 373 AU 18 25

