Topological Sort

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker
Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

mailto:shri@cs.washington.edu

1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14.:
15:
16:
17:
18:
19:

Dijkstra’s algorithm

. function Dijkstra(Graph G, Vertex source) > with MPQ

initialize distances to oo, source.dist = 0
mark all vertices unprocessed
initialize MPQ as a min priority queue; add source with priority 0
while MPQ is not empty do
u = MPQ.getMin()
for each edge (u,v) leaving u do
if u.dist + w(u,v) < v.dist then
if v.dist == oo then
MPQ.insert(v, u.dist + w(u, v))
else
MPQ.decreasePriority(v, u.dist + w(u,v))
end if
v.dist = u.dist + w(u,v)
v.predecessor = u
end if
end for
mark u as processed
end while

20: end function

Review

Vertex m Predecessor Processed

CSE 373 AU 18 2

1:
2
3
4:
9:
6
7
8
9

10:
11:
12:
13:
14.:
15:
16:
17:
18:
19:
20:

Review

Dijkstra’s algorithm

Vertex | Distance | Predecessor | Processed
S -- Yes

function Dijkstra(Graph G, Vertex source) > with MPQ %)
: initialize distances to oo, source.dist = 0
mark all vertices unprocessed B 1 S Yes
initialize MPQ as a min priority queue; add source with priority 0 C 6 S Yes
while MPQ is not empty do
u = MPQ.getMin() E 2 B Yes
for each edge (u,v) leaving u do
if u.dist + w(u,v) < v.dist then T 3 E Yes

if v.dist == oo then
MPQ.insert(v, u.dist + w(u, v))
else
MPQ.decreasePriority(v, u.dist + w(u,v))
end if
v.dist = u.dist + w(u,v)

(8)—5
v.predecessor = u 1
end if @
end for 1
mark u as processed 6
end while 1
end function @’_.
1

CSE 373 AU 18 3

Running time analysis

1: function Dijkstra(Graph G, Vertex source) > with MPQ
2 initialize distances to oo, source.dist = 0

3 mark all vertices unprocessed

4: initialize MP(Q as a min priority queue; add source with priority 0

5: while MPQ is not empty do

6 u = MPQ.getMin()

7 for each edge (u,v) leaving u do

8 if u.dist + w(u,v) < v.dist then

9

: if v.dist == oo then
10: MPQ.insert(v, u.dist + w(u, v))
11: else
12: MPQ.decreasePriority(v, u.dist + w(u,v))
13: end if
14: v.dist = u.dist + w(u,v)
15: v.predecessor = u
16: end if
17: end for
18: mark u as processed
19: end while

20: end function CSE 373 AU 18

History of shortest path algorithms

Algorithm /Author Time complexity

Ford O(IVI?|E]) 1956
Bellman-Ford. Shimbel O(|V||E]) 1958
Dijkstra’s algorithm with binary heap O(|E|log|V| + |V|log|V]) | 1959
Dijkstra’s algorithm with Fibonacchi heap O(|E| + |V]|log|V]) 1984
Gabow'’s algorithm O(|E| + |V| [log |V]) 1990
Thorup O(|E| + |V]|loglog |V|) 2004

History of shortest path algorithms. In this class, from this table, you are expected to know only Dijkstra’s algorithm with
binary heap and its time complexity. You are not expected to know the other algorithms or their time complexities.

CSE 373 AU 18 5

Other applications of shortest paths

Shortest path algorithms are obviously useful for GoogleMaps.

The wonderful thing about graphs is they can encode arbitrary relationships among
objects.

| have a message | need to get from point s to point t.

But the connections are unreliable.
What path should | send the message along so it has the best chance

of arriving?

Maximum Probability Path Problem

Given: a directed graph G, where each edge weight is the probability of
successfully transmitting a message across that edge

Find: the path from s to t with maximum probability of message
transmission

CSE 373 AU 18

6

Other applications of shortest paths

Robot navigation

Urban traffic planning

Tramp steamer problem

Optimal pipelining of VLSI chips

Operator scheduling

Subroutine in higher level algorithms

Exploiting arbitrage opportunities in currency exchanges
Open shortest path first routing protocol for IP

Optimal truck routing through given traffic congestion

CSE 373 AU 18 7

’ Topological Sort

CSE 373 AU 18

Problem 1: Ordering Dependencies

Given a bunch of courses with prerequisites, find an order to take the courses in.

Math 126
:::}ﬂ CSE 143
CSE 142

CSE 374

CSE 373

~

Math 126

CSE 142

——

SN——

CSE 143

W —

CSE 373

—~__

e

CSE 374

CSE 417

I

CSE 373 AU 18

9

Problem 1: Ordering Dependencies

Given a directed graph G, where we have an edge from u to v if u must happen before v.

We can only do things one at a time, can we find an order that respects dependencies?

Topological Sort (aka Topological Ordering)

Given: a directed graph G
Find: an ordering of the vertices so all edges go from left to right.

Uses:

Compiling multiple files

Graduating

Manufacturing workflows (assembly lines)

CSE 373 AU 18 10

Topological Ordering

A course prerequisite chart and a possible topological ordering.

CSE 143

CSE 374

CSE 373

——

Math 126
CSE 142
-
Math 126 CSE 142
SN—

CSE 143

W —

CSE 373

N

CSE 417

~__

CSE 374

-

—

CSE 417

CSE 373 AU 18

1

Can we always order a graph?

Can you topologically order this graph?

Directed Acyclic Graph (DAG)

A directed graph without any cycles.

A graph has a topological ordering if and only if it is a DAG.

CSE 373 AU 18 12

Ordering a DAG

Does this graph have a topological ordering? If so find one.

If a vertex doesn’t have any edges going into it, we can add it to the ordering.
More generally, if the only incoming edges are from vertices already in the ordering, it’s safe to add.

CSE 373 AU 18 13

How Do We Find a Topological Ordering?

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14.:
15:
16:
17:
18:
19:

function TopologicalSort(Graph G, Vertex source)

count how many incoming edges each vertex has
Collection toProcess = new Collection()
for each Vertex v in G do
if v.edgesRemaining == 0 then
toProcess.insert(v)
end if
end for
topOrder = new List()
while toProcess is not empty do
u = toProcess.remove()
topOrder.insert(u)
for each edge (u,v) leaving u do
v.edgesRemaining = v.edgesRemaining - 1
if v.edgesRemaining == 0 then
toProcess.insert(v)
end if
end for
end while

20: end function

CSE 373 AU 18

14

What's the running time?

1: function TopologicalSort(Graph G, Vertex source)
2 count how many incoming edges each vertex has
3 Collection toProcess = new Collection()

4: for each Vertex v in G do

5: if v.edgesRemaining == 0 then

6 toProcess.insert(v)

7 end if

8 end for

9 topOrder = new List()

10: while toProcess is not empty do

11: u = toProcess.remove()

12: topOrder.insert(u)

13: for each edge (u,v) leaving u do

14: v.edgesRemaining = v.edgesRemaining - 1
15: if v.edgesRemaining == 0 then

16: toProcess.insert(v)

17: end if

18: end for

19: end while

20: end function

CSE 373 AU 18

15

[~ Strongly Connected Components

Connected [Undirected] Graphs

Connected graph — a graph where every vertex Connected Component — a subgraph

is connected to every other vertex via some in which any two vertices are
path. It is not required for every vertex to have connected via some path, but is
an edge to every other vertex connected to no additional vertices in

) . f " the supergraph
There exists some way to get from each vertex There exists some way to get from each

to every other vertex vertex within the connected component to
every other vertex in the connected
Robb component
@ A vertex with no edges is itself a connected
component
S
S

=

CSE 373 AU 18

17

Strongly Connected Components

Strongly Connected Component

A subgraph C such that every pair of vertices in C is connected via

some path in both directions, and there is no other vertex which is
connected to every vertex of C in both directions.

Note: the direction of the edges matters!

CSE 373 AU 18 18

Strongly Connected Components Problem

{A}, {B}, {C,D,E,F}, {J K}

Strongly Connected Components Problem

Given: A directed graph G
Find: The strongly connected components of G

CSE 373 AU 18 19

SCC Algorithm

Ok. How do we make a computer do this?

You could:
run a [B/D]FS from every vertex,

For each vertex record what other vertices it can get to
and figure it out from there.

But you can do better. There's actually an O(|V|+|E|) algorithm!

| only want you to remember two things about the algorithm:
It is an application of depth first search.
It runs in linear time

The problem with running a [B/D]FS from every vertex is you recompute a lot of information.

The time you are popped off the stack in DFS contains a “smart” ordering to do a second DFS where
you don't need to recompute that information.

CSE 373 AU 18 20

Why Find SCCs?

Graphs are useful because they encode relationships between arbitrary objects.
We've found the strongly connected components of G.

Let's build a new graph out of them! Call it H
Have a vertex for each of the strongly connected components
Add an edge from component 1to component 2 if there is an edge from a vertex inside 1to one inside 2.

ey,

CSE 373 AU 18 21

Why Find SCCs?

e,

That's awful meta. Why?

This new graph summarizes reachability information of the original graph.
-1 can get from A (of G) in 1to F (of G) in 3 if and only if | can get from 1to 3 in H.

CSE 373 AU 18 22

Why Must H Be a DAG?

H is always a DAG (do you see why?).

CSE 373 AU 18 23

Takeaways

Finding SCCs lets you collapse your graph to the meta-structure.
If (and only if) your graph is a DAG, you can find a topological sort of your graph.

Both of these algorithms run in linear time.

Just about everything you could want to do with your graph will take at least as long.

You should think of these as “almost free” preprocessing of your graph.
Your other graph algorithms only need to work on
topologically sorted graphs and
strongly connected graphs.

CSE 373 AU 18 24

= Appendix: Strongly Connected
Components Algorithm

Efficient SCC

We'd like to find all the vertices in our strongly connected component in time
corresponding to the size of the component, not for the whole graph.

We can do that with a DFS (or BFS) as long as we don't leave our connected component.

If we're a “sink” component, that's guaranteed. |l.e. a component whose vertex in the meta-
graph has no outgoing edges.

How do we find a sink component? We don’t have a meta-graph yet (we need to find the
components first)

DFS can find a vertex in a source component, i.e. a component whose vertex in the meta-
graph has no incoming edges.
That vertex is the last one to be popped off the stack.

So if we run DFS in the reversed graph (where each edge points the opposite direction) we
can find a sink component.

CSE 373 AU 18

26

Efficient SCC

So from a DFS in the reversed graph, we can use the order vertices are popped off the stack
to find a sink component (in the original graph).

Run a DFS from that vertex to find the vertices in that component /n size of that component
time.

Now we can delete the edges coming into that component.

The last remaining vertex poEped off the stack is a sink of the remaining graph, and now a
DFS from them won't leave the component.

lterate this process (grab a sink, start DFS, delete edges entering the component).

In total we've run two DFSs. (since we never leave our component in the second DFS).
More information, and pseudocode:

https://en.wikipedia.org/wiki/Kosaraju%27s algorithm
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/19-dfs.pdf (mathier)

CSE 373 AU 18

27

https://en.wikipedia.org/wiki/Kosaraju's_algorithm
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/19-dfs.pdf

