Shortest Paths

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker
Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

mailto:shri@cs.washington.edu

Four classes of graph problem

.. that can be solved efficiently (in polynomial time)

Shortest path — find a shortest path between two vertices in a graph

Minimum spanning tree — find subset of edges with minimum total weights

Matching — find set of edges without common vertices

AW

Maximum flow — find the maximum flow from a source vertex to a sink vertex

A wide array of graph problems that can be solved in polynomial time are variants of these
above problems.

In this class, we'll cover the first two problems — shortest path and minimum spanning tree

CSE 373 AU 18

BFS on a directed graph

Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?

When processing a vertex insert neighbors in
alphabetical order.

1: function search(Graph G)

2 mark all vertices as unknown

3 toVisit.enqueue(first vertex)

4: mark first vertex as known

5: while toVisit is not empty do

6 current = toVisit.dequeue()

7 for v : current.outNeighbors() do
8 if v is unknown then

9 toVisit.enqueue(v)

10: mark v as known
11: end if

12: end for

13: visited.add(current)

14: end while

15: end function

CSE 373 AU 18 3

Q1: Do a BFS no this graph, starting at

node A

Add nodes to queue in alphabetical order

Quevue

Add nodes to queue in reverse alphabetical order

Queuve

CSE 373 AU 18

Q2: Do a DFS no this graph, starting at

node A

Add nodes to stack in alphabetical order

Stack

Add nodes to stack in reverse alphabetical order

Stack

CSE 373 AU 18

5

Shortest pat

hs

Communicationsf
~4Building{(CMU) =
-

Radelford Paiking Barage ™,

How does Google Maps figure out this is the fastest way to get to office hours?

Odegaard Undergraduate
Library/(QUG)

Kane Hall 28
Smith,Hall'(SMI) Parkin

';- Kane Hall (KNE)

Suzzallo'and

Meany.Hall for the g
Allen Libraries

Performing Arts

WiStey,
S
s,

e :
e Grant L0,

-

Bagley Hall (BAG)
&

-

Bldg,(EEB) i
& -

()
%,

2
<
2,
%
2

-2

ics/Astronomy
torium,(PAA)

L
~ 0O
DigitalGlobe, U.S USDA Farm

A

rea

- @ =
on YV
Padeélford Hall/(RDL) %

Pa’rking AreaiN2

I
Fluke Hall, University, .‘
. of Washington

University, of
Washington®

o
Electrical Engl%‘eermg

Ntop, i

\Raul G Allen.Center

for/Computer;Science 4+

>

RO R
")

L

Terms

ke Blyq, NE:

CSE 373 AU 18

6

Representing maps as graphs

How do we represent a map as a graph? What are the vertices and edges?

Odegaard Undergraduate
Library/(QUG) -
KanejHall

';- Kane Hall (KNE)

Meany.Hall for the g
Performing Arts

WiStey,
S
s,

e :
e Grant L0,

-

Bagley Hall (BAG)
&

-

()
%,

2
<
2,
%
2

ics/Astronomy
torium,(PAA)

L
~ 0O
DigitalGlobe, U.S USDA Farm

Suzzallo'and
Allen Libraries

Smith Hall‘?SMl)

Communicationsf
~4Building{(CMU) =
-

Parkin

A

rea

Radelford Paiking Barage ™,
o
on YV
Padélford Hall,(RDL) /%
Parking AreaiN2

I
Fluke Hall, University, .‘
. of Washington

University, of
Washington®

o
Electrical Engl%‘eermg

Bldg,(EEB) i
& -

Ntop, i

Raul G! Alle,._n_c_eﬁfer \
for/,Computer:Science..* |

ke Blyq, NE:

RO R
")

L

Terms

CSE 373 AU 18

Representing maps as graphs

Question:
Does this graph correctly model
all the shown paths?

CSE 373 AU 18 8

Representing maps as graphs

Question:
Does this graph correctly model
all the shown paths?

Not quite.

Some paths are longer than others.
So we use “weights” to capture that
additional information.

CSE 373 AU 18 9

Shortest paths

The length of a path is the sum of the edge weights on that path.

Shortest Path Problem

Given: a directed graph G and vertices s and t

Find: the shortest path from s to t

CSE 373 AU 18 10

Unweighted graphs

Let's start with a simpler version: the edges are all the same weight (unweighted)
If the graph is unweighted, how do we find a shortest paths?

chool of the Arts

B ("
S)) C -
East Queen
Anne
'Y Playground
e St)
) 4 v v \ v
Blaine S (\ o U Ve > f)
J "/ "/ "\, .
g -
3

ym

o gle

CSE 373 AU 18 1

Unweighted graphs

If the graph is unweighted, how do we find a shortest paths?

What's the shortest path from s to s?
Well...we're already there.

What's the shortest path fromstou or stov?
Just go on the edge from s

From s tow, x, ory?
Can't get there directly from s, if we want a length 2 path, have to go through u or v.

CSE 373 AU 18 12

Unweighted graphs: Key |ldea

To find the set of vertices at distance k, just
find the set of vertices at distance k-1, and
see if any of them have an outgoing edge
to an undiscovered vertex.

Do we already know an algorithm that
does something like that?

Yes! BFS!

1: function bfsShortestPaths(Graph G, Vertex source)
2 toVisit.enqueue(source)

3 mark source as known

4 source.dist = 0

5: while toVisit is not empty do
6

7

8

9

current = toVisit.dequeue()
for v : current.outNeighbors() do
if v is unknown then
v.distance = current.distance 4 1

10: v.predecessor = current
11: toVisit.enqueue(v)

12: mark v as known

13: end if

14: end for

15: end while

16: end function

CSE 373 AU 18

13

Unweighted graphs

If the graph is unweighted, how do we find a shortest paths?

1: function bfsShortestPaths(Graph G, Vertex source)
2 toVisit.enqueue(source)

3 mark source as known

4: source.dist = 0

5: while toVisit is not empty do
6

7

8

9

current = toVisit.dequeue()
for v : current.outNeighbors() do
if v is unknown then

v.distance = current.distance + 1] 2
10: v.predecessor = current
11: toVisit.enqueue(v)
12: mark v as known
13: end if
14: end for
15: end while

16: end function

CSE 373 AU 18 14

What about the target vertex?

Shortest Path Problem

Given: a directed graph G and vertices s,t
Find: the shortest path from s to t.

BFS didn’t mention a target vertex...
It actually finds the shortest path from s to every other vertex.

CSE 373 AU 18 15

Weighted graphs

Each edge should represent the “time” or “distance” from one vertex to another.

Sometimes those aren’t uniform, so we put a weight on each edge to record that number.
The length of a path in a weighted graph is the sum of the weights along that path.

We'll assume all of the weights are positive
For GoogleMaps that definitely makes sense.
Sometimes negative weights make sense. Today’s algorithm doesn’t work for those graphs

There are other algorithms that do work.

CSE 373 AU 18

16

Weighted graphs: Take 1

BFS works if the graph is unweighted. Maybe it just works for weighted graphs too?

What went wrong? When we found a shorter path from s to u, we needed to update the distance
to v (and anything whose shortest path went through u) but BFS doesn’t do that.

CSE 373 AU 18 17

Weighted graphs: Take 2

Reduction (informailly)

Using an algorithm for Problem B to solve Problem A.

You already do this all the time.

In project 2, you reduced implementing a hashset to implementing a hashmap.

Any time you use a library, you're reducing your problem to the one the library solves.

Can \r/]ve reduce finding shortest paths on weighted graphs to finding them on unweighted
graphs?

CSE 373 AU 18 18

Weighted graphs: A Reduction

Given a weighted graph, how do we turn it into an unweighted one without messing up the
edge lengths?

Transform Input

Unweighted Shortest

Paths

Transform Output

CSE 373 AU 18 19

Weighted graphs: A Reduction

What is the running time of our Does our reduction even work on this
reduction on this graph? graph?

O(|V|+|E]) of the modified graph, Ummm....
which is...slow.

Tl;dr: If your graph’s weights are all small positive integers, this reduction might work great.
Otherwise we probably need a new idea.

CSE 373 AU 18 20

Weighted graphs: Take 3

So we can't just do a reduction.

Instead let's try to figure out why BFS worked in the unweighted case, and try to make the
same thing happen in the weighted case.

Why did BFS work on unweighted graphs? How did we avoid this problem:
1, 2

1 1

: v ()

0 20 3 1 9 ‘ 22

When we used a vertex u to update shortest paths we already knew the exact shortest path
to u. So we never ran into the update problem

So if we process the vertices in order of distance from s, we have a chance.

CSE 373 AU 18

21

Weighted graphs: Take 3

Goal: Process the vertices in order of distance from s

|dea:

Have a set of vertices that are "known”
(we know at least one path from s to them).

Record an estimated distance
(the best way we know to get to each vertex).

If we process only the vertex closest in estimated distance, we won't ever find a shorter path
to a processed vertex.

CSE 373 AU 18 22

10:
11:
12:
13:
14:
15:

Dijkstra’s algorithm

. function Dijkstra(Graph G, Vertex source)
initialize distances to oo
mark source as distance 0
mark all vertices unprocesed
while there are unprocessed vertices do
let u be the closest unprocessed vertex
for each edge (u, v) leaving u do
if u.dist + w(u,v) < v.dist then
v.dist = u.dist + w(u,v)
v.predecessor = u
end if

Vortox | Distance | Prodscossor | rocessod
S

end for

mark u as processed
end while
end function

CSE 373 AU 18

23

10:
11:
12:
13:
14:
15:

Dijkstra’s algorithm

. function Dijkstra(Graph G, Vertex source)
initialize distances to oo
mark source as distance 0
mark all vertices unprocesed
while there are unprocessed vertices do
let u be the closest unprocessed vertex
for each edge (u, v) leaving u do
if u.dist + w(u,v) < v.dist then
v.dist = u.dist + w(u,v)
v.predecessor = u
end if

S

end for

mark u as processed
end while
end function

vi A W N P O

Distance | Prodocessor | Processed_
== Yes

S
W
X

u

\'%

Yes
Yes
Yes
Yes

Yes

CSE 373 AU 18

24

Implementation details

One of those lines of pseudocode was a little sketchy

> let u be the closest unprocessed vertex

What ADT have we talked about that might work here?

Minimum Priority Queues!

state

Set of comparable values
- Ordered based on “priority”

behavior
removeMin() — returns the element with
the smallest priority, removes it from the
collection

peekMin() — find, but do not remove the
element with the smallest priority

insert(value) — add a new element to the
collection

CSE 373 AU 18

25

Making minimum priority queues (MPQ)

work

They won't quite work “out of the box”.

Min Priority Queue ADT

state

Set of comparable values
- Ordered based on “priority”

behavior
removeMin() — returns the element with
the smallest priority, removes it from the
collection

peekMin() — find, but do not remove the
element with the smallest priority

insert(value) — add a new element to the
collection

Sk 373

u18

26

10:
11:
12:
13:
14:
15:

Dijkstra’s algorithm

. function Dijkstra(Graph G, Vertex source)
initialize distances to oo
mark source as distance 0
mark all vertices unprocesed
while there are unprocessed vertices do
let u be the closest unprocessed vertex
for each edge (u, v) leaving u do
if u.dist + w(u,v) < v.dist then
v.dist = u.dist + w(u,v)
v.predecessor = u
end if

S

end for

mark u as processed
end while
end function

vi A W N P O

Distance | Prodocessor | Processed_
== Yes

S
W
X

u

\'%

Yes
Yes
Yes
Yes

Yes

CSE 373 AU 18

27

Making minimum priority queues (MPQ)
work

They won't quite work “out of the box”.

We don't have an update priority method. Can we add one?
Percolate up!

To percolate u's entry in the heap up we'll have to get to it.
. _ _ o state
Each vertex need pointer to where it appears in the priority queue Set of comparable values

I'm going to ignore this point for the rest of the lecture. - Ordered based on “priority”

behavior
removeMin() — returns the element with
the smallest priority, removes it from the

collection

peekMin() — find, but do not remove the
element with the smallest priority

insert(value) — add a new element to the

collection

DecreasePriority(e, p) — decreases the
priority of element e down to p.

CSE 373 AU 18

28

Running time analysis

1: function Dijkstra(Graph G, Vertex source) > with MPQ
2 initialize distances to oo, source.dist = 0

3 mark all vertices unprocessed

4: initialize MP(Q as a min priority queue; add source with priority 0

5: while MPQ is not empty do

6 u = MPQ.getMin()

7 for each edge (u,v) leaving u do

8 if u.dist + w(u,v) < v.dist then

9

: if v.dist == oo then
10: MPQ.insert(v, u.dist + w(u, v))
11: else
12: MPQ.decreasePriority(v, u.dist + w(u,v))
13: end if
14: v.dist = u.dist + w(u,v)
15: v.predecessor = u
16: end if
17: end for
18: mark u as processed
19: end while

20: end function CSE 373 AU 18 29

History of shortest path algorithms

Algorithm /Author Time complexity

Ford O(IVI?|E]) 1956
Bellman-Ford. Shimbel O(|V||E]) 1958
Dijkstra’s algorithm with binary heap O(|E|log|V| + |V|log|V]) | 1959
Dijkstra’s algorithm with Fibonacchi heap O(|E| + |V]|log|V]) 1984
Gabow'’s algorithm O(|E| + |V| [log |V]) 1990
Thorup O(|E| + |V]|loglog |V|) 2004

History of shortest path algorithms. In this class, from this table, you are expected to know only Dijkstra’s algorithm with
binary heap and its time complexity. You are not expected to know the other algorithms or their time complexities.

CSE 373 AU 18 30

Other applications of shortest paths

Shortest path algorithms are obviously useful for GoogleMaps.

The wonderful thing about graphs is they can encode arbitrary relationships among
objects.

| don't care if you remember this problem

| don't care if you remember how we apply shortest paths.

| jJust want you to see that these algorithms have non-obvious applications.

CSE 373 AU 18 31

Other applications: Maximum probability path

| have a message | need to get from point s to point t.

But the connections are unreliable.
What path should | send the message along so it has the best chance of arriving?

Maximum Probability Path
Given: a directed graph G, where each edge weight is the probability of

successfully transmitting a message across that edge
Find: the path from s to t with maximum probability of message

transmission

CSE 373 AU 18 32

Other applications of shortest paths

Robot navigation

Urban traffic planning

Tramp steamer problem

Optimal pipelining of VLSI chips

Operator scheduling

Subroutine in higher level algorithms

Exploiting arbitrage opportunities in currency exchanges
Open shortest path first routing protocol for IP

Optimal truck routing through given traffic congestion

CSE 373 AU 18 33

