Graph Traversals

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...
Graph Vocabulary

Graph Direction
- **Undirected graph** – edges have no direction and are two-way

 \[V = \{ A, B, C \} \]

 \[E = \{ (A, B), (B, C) \} \text{ inferred } (B, A) \text{ and } (C,B) \]

- **Directed graphs** – edges have direction and are thus one-way

 \[V = \{ A, B, C \} \]

 \[E = \{ (A, B), (B, C), (C, B) \} \]

Degree of a Vertex
- **Degree** – the number of edges containing that vertex

 \[A : 1, B : 2, C : 1 \]

- **In-degree** – the number of directed edges that point to a vertex

 \[A : 0, B : 2, C : 1 \]

- **Out-degree** – the number of directed edges that start at a vertex

 \[A : 1, B : 1, C : 1 \]
Graph Vocabulary

Dense Graph – a graph with a lot of edges
\(E \in \Theta(V^2) \)

Sparse Graph – a graph with “few” edges
\(E \in \Theta(V) \)
Graph Vocabulary

Self loop – an edge that starts and ends at the same vertex

![Self loop diagram](image)

Parallel edges – two edges with the same start and end vertices

![Parallel edges diagram](image)

Simple graph – a graph with no self-loops and no parallel edges
Walk – A sequence of adjacent vertices. Each connected to next by an edge.

A, B, C, D is a walk.
So is A, B, A

(Directed) Walk – must follow the direction of the edges

A, B, C, D, A is a directed walk.
A, B, A is not.

Length – The number of edges in a walk
- (A, B, C, D) has length 3.
Graph Vocabulary

Path – A walk that doesn’t repeat a vertex. A,B,C,D is a path. A,B,A is not.

Cycle – path with an extra edge from last vertex back to first.

Be careful looking at other sources.
Some people call our “walks” “paths” and our “paths” “simple paths”
Use the definitions on these slides.
Paths and Reachability

Common questions:
- Is there a path between two vertices? (Can I drive from Seattle to LA?)
- What is the length of the shortest path between two vertices? (How long will it take?)
- List vertices that can reach the maximum number of nodes with a path of length 2.
- Can every vertex reach every other on a short path?
 - Length of the longest shortest path is the “diameter” of a graph
Implementing a Graph

Two main ways to implement a graph:

1. Adjacency Matrix
2. Adjacency List
Adjacency Matrix

Assign each vertex a number from 0 to V − 1
Create a V x V array of Booleans (or Int, as 0 and 1)
If (x,y) ∈ E then arr[x][y] = true

Time complexity (in terms of V and E)
- Get in-edges:
- Get out-edges:
- Decide if an edge (u, w) exists:
- Insert an edge:
- Delete an edge:

Space complexity:
Assign each vertex a number from 0 to V – 1
Create a V x V array of Booleans (or Int, as 0 and 1)
If (x,y) ∈ E then arr[x][y] = true

Time complexity (in terms of V and E)
- Get in-edges: $O(|V|)$
- Get out-edges: $O(|V|)$
- Decide if an edge (u, w) exists: $O(1)$
- Insert an edge: $O(1)$
- Delete an edge: $O(1)$

Space complexity: $O(|V|^2)$
Create a Dictionary of size V from type V to Collection of E
If $(x,y) \in E$ then add y to the set associated with the key x

Time complexity
- Get in-edges:
- Get out-edges:
- Decide if an edge (u, w) exists:
- Insert an edge:
- Delete an edge:

Space complexity:
Adjacency List

Create a Dictionary of size V from type V to Collection of E
If \((x,y) \in E\) then add \(y\) to the set associated with the key \(x\)

Time complexity
- Get in-edges: \(O(|V| + |E|)\)
- Get out-edges: \(O(1)\)
- Decide if an edge \((u, w)\) exists: \(O(1)\)
- Insert an edge: \(O(1)\)
- Delete an edge: \(O(1)\)

Space complexity: \(O(|V| + |E|)\)
Traversing a graph

1. The vertex you are currently processing is your ‘current’ vertex.
2. Pick any vertex to start
3. Put all neighbors of the current vertex in a “to be visited” collection
4. Mark the current vertex “visited”
5. Move onto next vertex in “to be visited” collection
6. Put all unvisited neighbors in “to be visited”
7. Move onto next vertex in “to be visited” collection
8. Repeat...
Traversing a graph

Breadth first search

Depth first search
BFS and DFS on Trees

Breadth first search
(Level order traversal)

Depth first search
(pre-order, in-order, post-order traversals)
Breadth First Search

search(graph)
 toVisit.enqueue(first vertex)
 mark first vertex as visited
 while(toVisit is not empty)
 current = toVisit.dequeue()
 for (V : current.neighbors())
 if (v is not visited)
 toVisit.enqueue(v)
 mark v as visited
 finished.add(current)

Current node: I
Queue: B D E C F G H I
Finished: A B D E C F G H I
Breadth First Search Analysis

search(graph)
 toVisit.enqueue(first vertex)
 mark first vertex as visited
 while (toVisit is not empty)
 current = toVisit.dequeue()
 for (V : current.neighbors())
 if (v is not visited)
 toVisit.enqueue(v)
 mark v as visited
 finished.add(current)

Visited: A B D E C F G H I

How many times do you visit each node? 1 time each
How many times do you traverse each edge? Max 2 times each
- Putting them into toVisit
- Checking if they’re visited

Runtime? $O(V + 2E) = O(V + E)$ “graph linear”
Depth First Search (DFS)

BFS uses a queue to order which vertex we move to next

Gives us a growing “frontier” movement across graph

Can you move in a different pattern? Can you use a different data structure?

What if you used a stack instead?

```
dfs(graph)
    toVisit.push(first vertex)
    mark first vertex as visited
    while(toVisit is not empty)
        current = toVisit.pop()
        for (V : current.neighbors())
            if (V is not visited)
                toVisit.push(v)
                mark v as visited
        finished.add(current)
```

```
bfs(graph)
    toVisit.enqueue(first vertex)
    mark first vertex as visited
    while(toVisit is not empty)
        current = toVisit.dequeue()
        for (V : current.neighbors())
            if (v is not visited)
                toVisit.enqueue(v)
                mark v as visited
    finished.add(current)
```
Depth First Search

defs(graph)

toVisit.push(first vertex)
mark first vertex as visited
while (toVisit is not empty)
current = toVisit.pop()
for (V: current.neighbors())
if (V is not visited)
toVisit.push(v)
mark v as visited
finished.add(current)

Current node: D

Stack: D G E I H G

Finished: A B E H G F I C D

How many times do you visit each node? 1 time each
How many times do you traverse each edge? Max 2 times each
- Putting them into toVisit
- Checking if they’re visited

Runtime? $O(V + 2E) = O(V + E)$ “graph linear”