
Graph Traversals

CSE 373: Data Structures and Algorithms

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker
Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

mailto:shri@cs.washington.edu

Review
Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges containing that vertex
A : 1, B : 2, C : 1

- In-degree – the number of directed edges that point to a vertex
A : 0, B : 2, C : 1

- Out-degree – the number of directed edges that start at a vertex
A : 1, B : 1, C : 1

Graph Vocabulary

CSE 373 AU 18 2

A B

C

V = { A, B, C }
E = { (A, B), (B, C) } inferred (B, A) and (C,B)

V = { A, B, C }

E = { (A, B), (B, C), (C, B) } A
B

C

Undirected Graph:

Directed Graph:

Review

Dense Graph – a graph with a lot of edges
E ∈ Θ(V2)

Sparse Graph – a graph with “few” edges
E ∈ Θ(V)

Graph Vocabulary

CSE 373 AU 18 3

A B

DC

E F

G
I

H

Review

Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges

Graph Vocabulary

CSE 373 AU 18 4

A B

A

Review

Walk – A sequence of adjacent vertices. Each connected to next by an
edge.

(Directed) Walk–must follow the direction of the edges

Length – The number of edges in a walk
- (A,B,C,D) has length 3.

Graph Vocabulary

CSE 373 AU 18 5

A B C D
A,B,C,D is a walk.
So is A,B,A

A B C D A,B,C,D,A is a directed walk.
A,B,A is not.

Graph Vocabulary
Path – A walk that doesn’t repeat a vertex. A,B,C,D is a path. A,B,A is not.

Cycle – path with an extra edge from last vertex back to first.

Be careful looking at other sources.
Some people call our “walks” “paths” and our “paths” “simple paths”
Use the definitions on these slides.

A B C D

A B C D

CSE 373 AU 18 6

Paths and Reachability
Common questions:

- Is there a path between two vertices? (Can I drive from Seattle to LA?)
- What is the length of the shortest path between two vertices? (How long will it take?)
- List vertices that can reach the maximum number of nodes with a path of length 2.
- Can every vertex reach every other on a short path?
-Length of the longest shortest path is the “diameter” of a graph

CSE 373 AU 18 7

1. Traversal A-B-C-D-B-E is a _______________ (Walk, Path, Neither)

2. Traversal B-E-A-B is a ________________ (Walk, Path, Neither)

3. _____________ does not contain a cycle. (Walk, Path)

4. Degree of Node B is ____________

Practice

CSE 373 AU 18 8

A B

E

C

D

Implementing a Graph
Two main ways to implement a graph:

1. Adjacency Matrix
2. Adjacency List

CSE 373 AU 18 9

Adjacency Matrix
A B C D

A T T

B

C T T

D T

CSE 373 AU 18 10

Assign each vertex a number from 0 to V – 1
Create a V x V array of Booleans (or Int, as 0 and 1)
If (x,y) ∈ E then arr[x][y] = true

Time complexity (in terms of V and E)
- Get in-edges:
- Get out–edges:
- Decide if an edge (u, w) exists:
- Insert an edge:
- Delete an edge:

Space complexity:

A

B

C

D

Adjacency Matrix
A B C D

A T T

B

C T T

D T

CSE 373 AU 18 11

Assign each vertex a number from 0 to V – 1
Create a V x V array of Booleans (or Int, as 0 and 1)
If (x,y) ∈ E then arr[x][y] = true

Time complexity (in terms of V and E)
- Get in-edges:"($)
- Get out–edges: "($)
- Decide if an edge (u, w) exists:"(1)
- Insert an edge: "(1)
- Delete an edge: "(1)

Space complexity: "($ ')

A

B

C

D

Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Time complexity
- Get in-edges:
- Get out–edges:
- Decide if an edge (u, w) exists:
- Insert an edge:
- Delete an edge:

Space complexity:

Adjacency List

CSE 373 AU 18 12

0

1

2

3

A

B

C

D

A

B

C

D

B C

B D

A

Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Time complexity
- Get in-edges: "($ + |'|)
- Get out–edges: "(1)
- Decide if an edge (u, w) exists: "(1)
- Insert an edge: "(1)
- Delete an edge: "(1)

Space complexity: "(|V| + |E|)

Adjacency List

CSE 373 AU 18 13

0

1

2

3

A

B

C

D

A

B

C

D

B C

B D

A

Graph Traversal

CSE 373 AU 18 14

root

Traversing a tree:
start at root,
visit children in order

Traversing a graph:
Where to start?
Which nodes to visit and in which order?

Three collections: ‘unvisited’, ‘visited’, and ‘to be visited’. And a pointer to the ‘current’ vertex

1. Pick any vertex to start. The vertex you are currently processing is your ‘current’ vertex.
2. Put all neighbors of the current vertex in a “to be visited” collection
3. Mark the current vertex “visited”

4. Move onto next vertex in “to be visited” collection
5. Put all unvisited neighbors in “to be visited”
6. Move onto next vertex in “to be visited” collection
7. Repeat…

Traversing a graph

CSE 373 AU 18 15

Traversing a graph

CSE 373 AU 18 16

Depth first searchBreadth first search

BFS and DFS on Trees

CSE 373 AU 18 17

Depth first search
(pre-order, in-order, post-order traversals)

Breadth first search
(Level order traversal)

Breadth First Search

Current node:
Queue:
Finished:

CSE 373 AU 18 18

F

B

C

D
A

E

G

H

I

J

A B

A

B E C

D

D F G

BDE

H

E

C

C

F

F

G

G

I

G

H

HI

I

search(graph)
toVisit.enqueue(first vertex)
mark first vertex as visited
while(toVisit is not empty)

current = toVisit.dequeue()
for (V : current.neighbors())

if (v is not visited)
toVisit.enqueue(v)
mark v as visited

finished.add(current)

Breadth First Search Analysis

Visited:

CSE 373 AU 18 19

F

B

C

D
A

E

G

H

I

J

A B D E C F G H I

Runtime? O(V + 2E) = O(V + E) “graph linear”

How many times do you visit each node?
How many times do you traverse each edge?

1 time each
Max 2 times each
- Putting them into toVisit
- Checking if they’re visited

search(graph)
toVisit.enqueue(first vertex)
mark first vertex as visited
while(toVisit is not empty)

current = toVisit.dequeue()
for (V : current.neighbors())

if (v is not visited)
toVisit.enqueue(v)
mark v as visited

finished.add(current)

Depth First Search (DFS)
BFS uses a queue to order which vertex we move to next
Gives us a growing “frontier” movement across graph
Can you move in a different pattern? Can you use a different data structure?
What if you used a stack instead?

CSE 373 AU 18 20

dfs(graph)
toVisit.push(first vertex)
mark first vertex as visited
while(toVisit is not empty)

current = toVisit.pop()
for (V : current.neighbors())

if (V is not visited)
toVisit.push(v)
mark v as visited

finished.add(current)

bfs(graph)
toVisit.enqueue(first vertex)
mark first vertex as visited
while(toVisit is not empty)

current = toVisit.dequeue()
for (V : current.neighbors())

if (v is not visited)
toVisit.enqueue(v)
mark v as visited

finished.add(current)

Depth First Search

CSE 373 AU 18 21

F

B

C

D
A

E

G

H

I

J

Current node:
Stack:
Finished: A B

A

B EC

D

D FG

BE

H

E CFG

I

H

H

I

GFICD

Runtime? O(V + 2E) = O(V + E) “graph linear”

How many times do you visit each node?
How many times do you traverse each edge?

1 time each
Max 2 times each
- Putting them into toVisit
- Checking if they’re visited

dfs(graph)
toVisit.push(first vertex)
mark first vertex as visited
while(toVisit is not empty)

current = toVisit.pop()
for (V : current.neighbors())

if (V is not visited)
toVisit.push(v)
mark v as visited

finished.add(current)

1. Write the BFS traversal when starting at node A:

2. Write the DFS traversal when starting at node A:

Practice

CSE 373 AU 18 22

A B

E

C

D

S

P

R

- BFS and DFS have the same worst-case time and space complexity
- The differ in terms of the order they visit the vertices and as a result they provide some
additional information about the graph. For example:
- BFS is useful to find shortest paths
- DFS is useful to check the presence of a cycle

BFS and DFS

CSE 373 AU 18 23

