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Review
Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges containing that vertex
A : 1, B : 2, C : 1

- In-degree – the number of directed edges that point to a vertex
A : 0, B : 2, C : 1

- Out-degree – the number of directed edges that start at a vertex
A : 1, B : 1, C : 1

Graph Vocabulary
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V = { A, B, C }
E = { (A, B), (B, C) } inferred (B, A) and (C,B)

V = { A, B, C }

E = { (A, B), (B, C), (C, B) } A
B

C

Undirected Graph:

Directed Graph:



Review

Dense Graph – a graph with a lot of edges
E ∈ Θ(V2)

Sparse Graph – a graph with “few” edges
E ∈ Θ(V)

Graph Vocabulary
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Review

Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges

Graph Vocabulary
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A



Review

Walk – A sequence of adjacent vertices. Each connected to next by an 
edge.

(Directed) Walk–must follow the direction of the edges

Length – The number of edges in a walk
- (A,B,C,D) has length 3.

Graph Vocabulary
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A B C D
A,B,C,D is a walk.
So is A,B,A

A B C D A,B,C,D,A is a directed walk.
A,B,A is not.



Graph Vocabulary
Path – A walk that doesn’t repeat a vertex. A,B,C,D is a path. A,B,A is not.

Cycle – path with an extra edge from last vertex back to first.

Be careful looking at other sources.
Some people call our “walks” “paths” and our “paths” “simple paths”
Use the definitions on these slides. 

A B C D

A B C D
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Paths and Reachability
Common questions:

- Is there a path between two vertices? (Can I drive from Seattle to LA?)
- What is the length of the shortest path between two vertices? (How long will it take?)
- List vertices that can reach the maximum number of nodes with a path of length 2.
- Can every vertex reach every other on a short path?
-Length of the longest shortest path is the “diameter” of a graph
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1. Traversal A-B-C-D-B-E is a _______________  (Walk, Path, Neither)

2. Traversal B-E-A-B is a ________________ (Walk, Path, Neither)

3. _____________ does not contain a cycle. (Walk, Path) 

4. Degree of Node B is ____________

Practice
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Implementing a Graph
Two main ways to implement a graph:

1. Adjacency Matrix
2. Adjacency List
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Adjacency Matrix
A B C D

A T T

B

C T T

D T
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Assign each vertex a number from 0 to V – 1
Create a V x V array of Booleans (or Int, as 0 and 1)
If (x,y) ∈ E then arr[x][y] = true

Time complexity (in terms of V and E)
- Get in-edges:
- Get out–edges:
- Decide if an edge (u, w) exists:
- Insert an edge:
- Delete an edge:

Space complexity:

A

B

C

D



Adjacency Matrix
A B C D

A T T

B

C T T

D T
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Assign each vertex a number from 0 to V – 1
Create a V x V array of Booleans (or Int, as 0 and 1)
If (x,y) ∈ E then arr[x][y] = true

Time complexity (in terms of V and E)
- Get in-edges:"( $ )
- Get out–edges: "( $ )
- Decide if an edge (u, w) exists:"(1)
- Insert an edge: "(1)
- Delete an edge: "(1)

Space complexity: "( $ ')

A

B

C

D



Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Time complexity
- Get in-edges:
- Get out–edges:
- Decide if an edge (u, w) exists:
- Insert an edge:
- Delete an edge:

Space complexity:

Adjacency List
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Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Time complexity
- Get in-edges: "( $ + |'|)
- Get out–edges: "(1)
- Decide if an edge (u, w) exists: "(1)
- Insert an edge: "(1)
- Delete an edge: "(1)

Space complexity: "(|V| + |E|)

Adjacency List
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Graph Traversal
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root

Traversing a tree: 
start at root, 
visit children in order

Traversing a graph: 
Where to start?
Which nodes to visit and in which order?



Three collections: ‘unvisited’, ‘visited’, and ‘to be visited’.  And a pointer to the ‘current’ vertex

1. Pick any vertex to start. The vertex you are currently processing is your ‘current’ vertex.
2. Put all neighbors of the current vertex in a “to be visited” collection
3. Mark the current vertex “visited”

4. Move onto next vertex in “to be visited” collection
5. Put all unvisited neighbors in “to be visited”
6. Move onto next vertex in “to be visited” collection
7. Repeat…

Traversing a graph
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Traversing a graph
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Depth first searchBreadth first search



BFS and DFS on Trees
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Depth first search
(pre-order, in-order, post-order traversals)

Breadth first search
(Level order traversal)



Breadth First Search

Current node:
Queue:
Finished:
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search(graph) 
toVisit.enqueue(first vertex)
mark first vertex as visited
while(toVisit is not empty) 

current = toVisit.dequeue()
for (V : current.neighbors())

if (v is not visited) 
toVisit.enqueue(v)
mark v as visited

finished.add(current)



Breadth First Search Analysis

Visited:
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A B D E C F G H I

Runtime? O(V + 2E) = O(V + E) “graph linear”

How many times do you visit each node?
How many times do you traverse each edge?

1 time each
Max 2 times each
- Putting them into toVisit
- Checking if they’re visited

search(graph) 
toVisit.enqueue(first vertex)
mark first vertex as visited
while(toVisit is not empty) 

current = toVisit.dequeue()
for (V : current.neighbors())

if (v is not visited) 
toVisit.enqueue(v)
mark v as visited

finished.add(current)



Depth First Search (DFS)
BFS uses a queue to order which vertex we move to next
Gives us a growing “frontier” movement across graph
Can you move in a different pattern? Can you use a different data structure?
What if you used a stack instead?
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dfs(graph) 
toVisit.push(first vertex)
mark first vertex as visited
while(toVisit is not empty) 

current = toVisit.pop()
for (V : current.neighbors())

if (V is not visited) 
toVisit.push(v)
mark v as visited

finished.add(current)

bfs(graph) 
toVisit.enqueue(first vertex)
mark first vertex as visited
while(toVisit is not empty) 

current = toVisit.dequeue()
for (V : current.neighbors())

if (v is not visited) 
toVisit.enqueue(v)
mark v as visited

finished.add(current)



Depth First Search
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Current node:
Stack:
Finished: A B

A
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Runtime? O(V + 2E) = O(V + E) “graph linear”

How many times do you visit each node?
How many times do you traverse each edge?

1 time each
Max 2 times each
- Putting them into toVisit
- Checking if they’re visited

dfs(graph) 
toVisit.push(first vertex)
mark first vertex as visited
while(toVisit is not empty) 

current = toVisit.pop()
for (V : current.neighbors())

if (V is not visited) 
toVisit.push(v)
mark v as visited

finished.add(current)



1. Write the BFS traversal when starting at node A:

2. Write the DFS traversal when starting at node A:

Practice
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- BFS and DFS have the same worst-case time and space complexity
- The differ in terms of the order they visit the vertices and as a result they provide some 
additional information about the graph. For example:
- BFS is useful to find shortest paths
- DFS is useful to check the presence of a cycle

BFS and DFS
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