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ReviewTechnique 3: Master Theorem
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Review

1. Unfolding method 
- more of a brute force method 
- Tedious but works

2. Tree methods
- more scratch work but less error prone 

3. Master theorem
- quick, but applicable only to certain type of recurrences 
- does not give a closed form (gives big-Theta)

Recurrence analysis techniques
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Review

Stable
- In the output, equal elements (i.e., elements with equal keys) appear in their original order

In-place
- Algorithm uses a constant additional space, !(1) extra space

Adaptive
- Performs better when input is almost sorted or nearly sorted
- (Likely different big-O for best-case and worst-case)

Fast. ! (% log %)

No algorithm has all of these properties. So choice of algorithm depends on the situation.

Desired properties in a sorting algorithm
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Review

Split array in the middle
Sort the two halves
Merge them together

Merge sort
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Quick Sort
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quickSort(input) {
if (input.length == 1)

return
else

pivot = getPivot(input)
smallerHalf = quickSort(getSmaller(pivot, input))
largerHalf = quickSort(getBigger(pivot, input))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1
n + T(n - 1) otherwise

T(n) = 

1 if n<= 1
n + 2T(n/2) otherwise

T(n) = 

No

Can be
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Choosing a Pivot
Average case behavior depends on a good pivot.
Pivot ideas:
Just take the first element
- Simple. But an already sorted (or reversed) list will give you a bad time.

Pick an element uniformly at random.
- Regardless of input!
- Probably too slow in practice :(

Median of Three
-Take the median of the first, last, and midpoint as the pivot.
-Fast!
-Unlikely to get bad behavior (but definitely still possible)
-Reasonable default choice.
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Worksheet Questions 1-3

CSE 373 AU 18 8



- Hybrid sorts

- Internal vs. external sorting

Parting thoughts on sorts
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Inter-data Relationships
Arrays
Categorically associated

Sometimes ordered

Typically independent

Elements only store pure 
data, no connection info

11

A

B C

Trees
Directional Relationships

Ordered for easy access

Limited connections

Elements store data and 
connection info

0 1 2

A B C

Graphs
Multiple relationship 
connections

Relationships dictate 
structure

Connection freedom!

Both elements and 
connections can store data

A

B

C
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Applications

Physical Maps

- Airline maps

- Vertices are airports, edges are flight paths

- Traffic

- Vertices are addresses, edges are streets

Relationships

- Social media graphs

- Vertices are accounts, edges are follower relationships

- Code bases

- Vertices are classes, edges are usage

Influence

- Biology

- Vertices are cancer cell destinations, edges are migration paths 

Related topics

- Web Page Ranking

- Vertices are web pages, edges are hyperlinks

- Wikipedia

- Vertices are articles, edges are links

SO MANY MORREEEE

www.allthingsgraphed.com
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Graph Vocabulary
Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges containing that vertex

A : 1, B : 1, C : 1
- In-degree – the number of directed edges that point to a vertex

A : 0, B : 2, C : 1
- Out-degree – the number of directed edges that start at a vertex

A : 1, B : 1, C : 1
13

A B

C

V = { A, B, C }

E = { (A, B), (B, C) } inferred (B, A) and (C,B)

V = { A, B, C }

E = { (A, B), (B, C), (C, B) } A
B

C

Undirected Graph:

Undirected Graph:
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Food for thought
Is a graph valid if there exists a vertex with a degree of 0?
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A
B

C

A has an “in degree” of 0

A
B

C

B has an “out degree” of 0

A
B

C

C has both an “in degree” 
and an “out degree” of 0

Is this a valid graph?

A

Yes!

A B C
A B

CD

Are these valid? Yup

Sure

Yes



Graph Vocabulary
Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges
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Graph Vocabulary

Walk – A sequence of adjacent vertices. Each connected to next by an edge.

(Directed) Walk–must follow the direction of the edges

Length – The number of edges in a walk

- (A,B,C,D) has length 3.

A B C D

A B C D

A,B,C,D is a walk.
So is A,B,A

A,B,C,D,B is a directed walk.
A,B,A is not.
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Graph Vocabulary

Path – A walk that doesn’t repeat a vertex. A,B,C,D is a path. A,B,A is not.

Cycle – path with an extra edge from last vertex back to first.

Be careful looking at other sources.

Some people call our “walks” “paths” and our “paths” “simple paths”
Use the definitions on these slides. 

A B C D

A B C D
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Worksheet Question 4
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Implementing a Graph
Implement with nodes…

Implementation gets super messy

What if you wanted a vertex without an edge?

How can we implement without requiring edges to access nodes?

Implement using some of our existing data structures!
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Adjacency Matrix
A B C D

A T T

B

C T T

D T
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Assign each vertex a number from 0 to V – 1

Create a V x V array of Booleans

If (x,y) ∈ E then arr[x][y] = true

Runtime (in terms of V and E)

- get out - edges for a vertex O(v)

- get in – edges for a vertex O(v)

- decide if an edge exists O(1)

- insert an edge O(1)

- delete an edge O(1)

- delete a vertex

- add a vertex

How much space is used?

V2

A

B

C

D



Graph Vocabulary
Dense Graph – a graph with a lot of edges

E ∈ Θ(V2)

Sparse Graph – a graph with “few” edges

E ∈ Θ(V)

An Adjacency Matrix seems a waste for a sparse graph… 
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Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Runtime (in terms of V and E)
- get out - edges for a vertex O(1)
- get in - edges for a vertex O(V + E)
- decide if an edge exists O(1)
- insert an edge O(1)
- delete an edge O(1)
- delete a vertex
- add a vertex

How much space is used?
V + E

Adjacency List
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Graph Vocabulary -- Connected Graphs
Connected graph – a graph where every vertex is 
connected to every other vertex via some path. It 
is not required for every vertex to have an edge to 
every other vertex

There exists some way to get from each vertex to 
every other vertex
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C
B

E
D

A

F

G

Connected Component – a subgraph in 
which any two vertices are connected via 
some path, but is connected to no 
additional vertices in the supergraph
- There exists some way to get from each vertex 

within the connected component to every other 
vertex in the connected component

- A vertex with no edges is itself a connected 
component

H


