
Graphs

CSE 373: Data Structures and Algorithms

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker 
Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

mailto:shri@cs.washington.edu


ReviewTechnique 3: Master Theorem

2

! " =
$ %ℎ'" " = 1
)! "

* + ", -.ℎ'/%01'

Given a recurrence of the following form:

Where ), *, and 2 are constants, then !(") has the following asymptotic bounds 

! " ∈ Θ ",log: ) < 2

log: ) = 2 ! " ∈ Θ ", log< "

log: ) > 2 ! " ∈ Θ ">?@A B

If

If

If

then

then

then

CSE 373 AU 18



Review

1. Unfolding method 
- more of a brute force method 
- Tedious but works

2. Tree methods
- more scratch work but less error prone 

3. Master theorem
- quick, but applicable only to certain type of recurrences 
- does not give a closed form (gives big-Theta)

Recurrence analysis techniques

CSE 373 AU 18 3



Review

Stable
- In the output, equal elements (i.e., elements with equal keys) appear in their original order

In-place
- Algorithm uses a constant additional space, !(1) extra space

Adaptive
- Performs better when input is almost sorted or nearly sorted
- (Likely different big-O for best-case and worst-case)

Fast. ! (% log %)

No algorithm has all of these properties. So choice of algorithm depends on the situation.

Desired properties in a sorting algorithm

CSE 373 AU 18 4



Review

Split array in the middle
Sort the two halves
Merge them together

Merge sort
0 1 2 3 4

8 2 57 91 22

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

! " = $
%& if " ≤ 1
2! "

2 + %-" otherwise

CSE 373 AU 18 5



Quick Sort

6

0 1 2 3 4 5 6

20 50 70 10 60 40 30

0 1 2 3 4

50 70 60 40 30

0

10

0 1

40 30

0 1

70 60

0

30

0

60

0 1

30 40

0 1

60 70

0 1 2 3 4

30 40 50 60 70

0 1 2 3 4 5 6

10 20 30 40 50 60 70

quickSort(input) {
if (input.length == 1)

return
else

pivot = getPivot(input)
smallerHalf = quickSort(getSmaller(pivot, input))
largerHalf = quickSort(getBigger(pivot, input))
return smallerHalf + pivot + largerHalf

}

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1
n + T(n - 1) otherwise

T(n) = 

1 if n<= 1
n + 2T(n/2) otherwise

T(n) = 

No

Can be
CSE 373 AU 18



Choosing a Pivot
Average case behavior depends on a good pivot.
Pivot ideas:
Just take the first element
- Simple. But an already sorted (or reversed) list will give you a bad time.

Pick an element uniformly at random.
- Regardless of input!
- Probably too slow in practice :(

Median of Three
-Take the median of the first, last, and midpoint as the pivot.
-Fast!
-Unlikely to get bad behavior (but definitely still possible)
-Reasonable default choice.

CSE 373 AU 18 7



Worksheet Questions 1-3

CSE 373 AU 18 8



- Hybrid sorts

- Internal vs. external sorting

Parting thoughts on sorts

CSE 373 AU 18 9



Graphs



Inter-data Relationships
Arrays
Categorically associated

Sometimes ordered

Typically independent

Elements only store pure 
data, no connection info

11

A

B C

Trees
Directional Relationships

Ordered for easy access

Limited connections

Elements store data and 
connection info

0 1 2

A B C

Graphs
Multiple relationship 
connections

Relationships dictate 
structure

Connection freedom!

Both elements and 
connections can store data

A

B

C

CSE 373 AU 18



Applications

Physical Maps

- Airline maps

- Vertices are airports, edges are flight paths

- Traffic

- Vertices are addresses, edges are streets

Relationships

- Social media graphs

- Vertices are accounts, edges are follower relationships

- Code bases

- Vertices are classes, edges are usage

Influence

- Biology

- Vertices are cancer cell destinations, edges are migration paths 

Related topics

- Web Page Ranking

- Vertices are web pages, edges are hyperlinks

- Wikipedia

- Vertices are articles, edges are links

SO MANY MORREEEE

www.allthingsgraphed.com

12CSE 373 AU 18

http://www.allthingsgraphed.com/


Graph Vocabulary
Graph Direction
- Undirected graph – edges have no direction and are two-way

- Directed graphs – edges have direction and are thus one-way

Degree of a Vertex
- Degree – the number of edges containing that vertex

A : 1, B : 1, C : 1
- In-degree – the number of directed edges that point to a vertex

A : 0, B : 2, C : 1
- Out-degree – the number of directed edges that start at a vertex

A : 1, B : 1, C : 1
13

A B

C

V = { A, B, C }

E = { (A, B), (B, C) } inferred (B, A) and (C,B)

V = { A, B, C }

E = { (A, B), (B, C), (C, B) } A
B

C

Undirected Graph:

Undirected Graph:

CSE 373 AU 18



Food for thought
Is a graph valid if there exists a vertex with a degree of 0?

CSE 373 AU 18 14

A
B

C

A has an “in degree” of 0

A
B

C

B has an “out degree” of 0

A
B

C

C has both an “in degree” 
and an “out degree” of 0

Is this a valid graph?

A

Yes!

A B C
A B

CD

Are these valid? Yup

Sure

Yes



Graph Vocabulary
Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges

CSE 373 AU 18 15

A B

A



Graph Vocabulary

Walk – A sequence of adjacent vertices. Each connected to next by an edge.

(Directed) Walk–must follow the direction of the edges

Length – The number of edges in a walk

- (A,B,C,D) has length 3.

A B C D

A B C D

A,B,C,D is a walk.
So is A,B,A

A,B,C,D,B is a directed walk.
A,B,A is not.

CSE 373 AU 18 16



Graph Vocabulary

Path – A walk that doesn’t repeat a vertex. A,B,C,D is a path. A,B,A is not.

Cycle – path with an extra edge from last vertex back to first.

Be careful looking at other sources.

Some people call our “walks” “paths” and our “paths” “simple paths”
Use the definitions on these slides. 

A B C D

A B C D

CSE 373 AU 18 17



Worksheet Question 4

CSE 373 AU 18 18



Implementing a Graph
Implement with nodes…

Implementation gets super messy

What if you wanted a vertex without an edge?

How can we implement without requiring edges to access nodes?

Implement using some of our existing data structures!

CSE 373 AU 18 19



Adjacency Matrix
A B C D

A T T

B

C T T

D T

CSE 373 AU 18 20

Assign each vertex a number from 0 to V – 1

Create a V x V array of Booleans

If (x,y) ∈ E then arr[x][y] = true

Runtime (in terms of V and E)

- get out - edges for a vertex O(v)

- get in – edges for a vertex O(v)

- decide if an edge exists O(1)

- insert an edge O(1)

- delete an edge O(1)

- delete a vertex

- add a vertex

How much space is used?

V2

A

B

C

D



Graph Vocabulary
Dense Graph – a graph with a lot of edges

E ∈ Θ(V2)

Sparse Graph – a graph with “few” edges

E ∈ Θ(V)

An Adjacency Matrix seems a waste for a sparse graph… 

CSE 373 AU 18 21

A B

DC

E F

G
I

H



Create a Dictionary of size V from type V to Collection of E
If (x,y) ∈ E then add y to the set associated with the key x

Runtime (in terms of V and E)
- get out - edges for a vertex O(1)
- get in - edges for a vertex O(V + E)
- decide if an edge exists O(1)
- insert an edge O(1)
- delete an edge O(1)
- delete a vertex
- add a vertex

How much space is used?
V + E

Adjacency List

CSE 373 AU 18 22

0

1

2

3

A

B

C

D

A

B

C

D

B C

B D

A



Graph Vocabulary -- Connected Graphs
Connected graph – a graph where every vertex is 
connected to every other vertex via some path. It 
is not required for every vertex to have an edge to 
every other vertex

There exists some way to get from each vertex to 
every other vertex

CSE 373 AU 18 23

C
B

E
D

A

F

G

Connected Component – a subgraph in 
which any two vertices are connected via 
some path, but is connected to no 
additional vertices in the supergraph
- There exists some way to get from each vertex 

within the connected component to every other 
vertex in the connected component

- A vertex with no edges is itself a connected 
component

H


