Sorting and
recurrence analysis techniques

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker

Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

mailto:shri@cs.washington.edu

Sorting problem statement

Given n comparable elements, rearrange them in an increasing order.
Input

An array A that contains n elements
Each element has a key k and an associated data

Keys support a comparison function (e.g., keys implement a Comparable interface)

Expected output
An output array A such that for any i and j,
Ali] < A[j]ifi < j (increasing order)
Array A can also have elements in reverse order (decreasing order)

CSE 373 AU 18

2

Desired properties in a sorting algorithm

Stable

In the output, equal elements (i.e., elements with equal keys) appear in their original order

In-place
Algorithm uses a constant additional space, 0(1) extra space

Adaptive
Performs better when input is almost sorted or nearly sorted
(Likely different big-O for best-case and worst-case)

Fast. O (nlogn)

No algorithm has all of these properties. So choice of algorithm depends on the situation.

CSE 373 AU 18

Sorting algorithms — High-level view

- 0(n?)
Insertion sort
Selection sort
Quick sort (worst)

- O(nlogn)
Merge sort
Heap sort
Quick sort (avQg)

- Q(nlogn) -- lower bound on comparison sorts

- 0(n) — non-comparison sorts
Bucket sort (avg)

CSE 373 AU 18 4

A framework to think about sorting algos

Some questions to consider when analyzing a sorting algorithm.

. . What is the state of the data during each step while sortin
Loop/step invariant: 9 P g

Runtime: Worst Average Best

Input: Worst Best

Stable __Yes/No/Can-be In-place __Yes/No/Can-be Adaptive _Yes/No
Operations: Comparisons ___= or < or approx. equal Moves

Data structure Which data structure is better suited for this algo

CSE 373 AU 18 5

Insertion sort

Visualization: https://visualgo.net/en/sorting

Idea: At step i, insert the it" element in the correct position among the first i elements.

Loop/step invariant:

Runtime: Worst

Input: Worst

Average

Best

Best

Stable

Operations: Comparisons

Data structure

In-place

Moves

Adaptive

CSE 373 AU 18

6

https://visualgo.net/en/sorting

Selection sort

|dea: At step i, find the smallest element among the not-yet-sorted elements (i
swap it with the element at i.

Loop/step invariant:

0

Visualization: https://visualgo.net/en/sorting

1 2 3 4 5 6 7

... n) and

Runtime: Worst

Input: Worst

Average

Best

Best

Stable

Operations: Comparisons

Data structure

In-place

Moves

Adaptive

CSE 373 AU 18

7

https://visualgo.net/en/sorting

Heap sort

ldea: buildHeap with all n elements
fori =0 ton do

Ali] = removeMin()
end for

Loop/step invariant:

Runtime: Worst Average
Input: Worst Best
Stable In-place

Best

Operations: Comparisons

Data structure

Moves

Adaptive

CSE 373 AU 18

8

In-place heap sort

|dea:
1. Treat initial array as a heap

2. When you call removeMin(), that frees up a slot towards the end in the array. Put the
extract min element there.

3. More specifically, when you remove the it" element, put it at A[n — i]

4. This gives you a reverse sorted array. But easy to fix in-place.

CSE 373 AU 18 9

Design technique: Divide-and-conquer

Very important technique in algorithm to attack problems

Three steps:

1. Divide: Split the original problem into smaller parts

2. Conquer: Solve individual parts independently (think recursion)

3. Combine: Put together individual solved parts to produce an overall solution

Merge sort and Quick sort are classic examples of sorting algorithms that use this technique

CSE 373 AU 18 10

Merge sort

To sort a given array,
Divide: Split the input array into two halves
Conquer: Sort each half independently

Combine: Merge the two sorted halves into
one sorted whole (HW3 Problem 6!)

Visualization: https://visualgo.net/en/sorting

function mergeSort(A)
if A.length == 1 then
return A;
else
mid = A.length / 2
firstHalf = mergeSort(new [0, ... mid))
secondHalf = mergeSort(new [mid+1, ... |)
return merge(firstHalf, secondHalf)
end if
end function

CSE 373 AU 18 1

https://visualgo.net/en/sorting

Merge sort

Split array in the middle
Sort the two halves

Merge them together

C1 ifn<1
= n
T(n) 2T (—) + c,n otherwise

2

57 91 22
57 | 91 22
57 91 22
91 .22
\/
22 91
/
22 57 91
\/
22 57 91

Unfolding (technique 1)

T(n)=2T(n/2) 4+ can
o (or () o) o

— 2T (%) + comn + can

— 22 (2T (;—3) + 02;—2) + comn + con

— 23T (2%) + con + comn + con

= 28" (1) + con 4+ con + - -+ + can

about log(n) times

= cin + canlogn

T(n) = {

C1

2T (

n
2

ifn<1

) + c,n otherwise

CSE 373 AU 18

13

Technique 2: Tree method ..
1 . oo | |

T(n) = 0
) {QT(n /2) +n otherwise
1

2

i

base

Last recursive level:

CSE 373 AU 18 14

Technique 2: Tree method ..
1 . oo | |

T(n)= 0
) {2T(n/2) +n otherwise
1
.n . 2
i
base

Last recursive level:

CSE 373 AU 18 15

Technique 2: Tree method ..
1 . oo | |

T(n)= 0
) {2T(n/2)+n otherwise
1
n 2
/ \ i
n n
2 2 base

Last recursive level:

CSE 373 AU 18 16

Technique 2: Tree method ..
1 . oo | |

T(n) = 0
) {2T(n/2) + n otherwise
1
n 2
/ \ i
n n
2 2 base
/ \ / \ Last recursive level:
n n n n
4 4 4 4

CSE 373 AU 18 17

Techniqgue 2: Tree method

1 ifn=1
T(n) = :
2T'(n/2) +n otherwise

N, v

ase
\ Last recursive level:

n

/

n

VAN ANVANEVAN
AN A A A AN A SRV A A

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 ifn=1
T(n) = :
2T'(n/2) +n otherwise

N S
/ \ /\ /\

AV

Techniqgue 2: Tree method

N

IS

/\

Number
of Work per | Work per
L |
eve Nodes Node Level
at level
0 1 n n
1 2 n
- n
2
2 4 r
- n
4
. i n
l 2 ? n
base 2log,n 1 n

Last recursive level: logn — 1

Combining it all together...

T(n) =n+

log, n -1

i=0

n =n-+nlogn

CSE 373 AU 18

19

Tree Method Practice

T(%)+T(%)+T(;—l)+cn2

N\

Level (i) Number of Work per Work per
Nodes Node Level

1

\/

4)4] 4

EXAMPLE PROVIDED BY CS 161 - JESSICA SU

HTTPS://WEB.STANFORD.EDU/CLASS/ARCHIVE/CS/CS161/CS161.1168/LECTURES3.PDF

20

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture3.pdf

Tree Method Practice

7 (

g)+T(

4

E) + T(E) + cn?

4

N\

Level (i) Number of Work per Work per
Nodes Node Level

0 1 cn? cn?
] 3 c (Z)Z 13_6 cn?
2 9 c (%)2 2156 cn?
i 3! ¢ (%)2 (13_6)l cn2
base 3log,n 4 4 . 3log,n
‘ g7]

Last recursive level: log, n — 1

Combining it all together...

logyan —1

=0

T(n) = 4 nlo8:3 + Z (

3
16

i

) ch?

EXAMPLE PROVIDED BY CS 161 - JESSICA SU
HTTPS://WEB.STANFORD.EDU/CLASS/ARCHIVE/CS/CS161/CS161.1168/LECTURES3.PDF

21

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture3.pdf

Technigue 3: Master Theorem

Given a recurrence of the following form:

d whenn =1
T(n) =

aT (%) + n¢ otherwise

Where a, b, and ¢ are constants, then T (1) has the following asymptotic bounds
If logpa<c then T(n) € 6(n°)
If logpba=c then T(n) € Onlog,n)

If logp,a >c then T(n) € G)(nlogb a)

22

Apply Master Theorem

1whenn<1
T = 2T (2 herwi
(E) + n otnerwise

logpa=c= log,2=1

NN

0O O T O

—

T(n) € ©(nlog, n) = O(n'log, n)

23

Reflecting on Master Theorem

height = logy, a
branchWork = n‘log,a

leafWork = d(nlogb “)

The log, a < c¢ case
Recursive case conquers work more quickly than it divides work

Most work happens near “top” of tree
Non recursive work in recursive case dominates growth, n¢term

The log, a = ¢ case
Work is equally distributed across call stack (throughout the “tree”)
Overall work is approximately work at top level x height

The logya > ¢ case
Recursive case divides work faster than it conquers work
Most work happens near “bottom” of tree
Leaf work dominates branch work

24

Recurrence analysis techniques

1. Unfolding method

more of a brute force method
Tedious but works

2. Tree methods
more scratch work but less error prone

3. Master theorem
quick, but applicable only to certain type of recurrences
does not give a closed form (gives big-Theta)

CSE 373 AU 18 — SHRI MARE 25

