CSE 373: Data Structures and Algorithms

Binary Heaps
Autumn 2018

Shrirang (shri) Mare
shri@cs.washington.edu

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker Brand,
Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...


mailto:shri@cs.washington.edu

Problems

1. Merging multiple sorted arrays
OutArray[k] = min(Array1[il1], Array2[i2]) // for 2 sorted arrays
OutArray[k] = min(Arrayl1[il1], Array2[i2], .., Arrayk[ik]) // for k sorted arrays

2. Given n 2D points, find k points which are closest to point P(x, y)

S = Set of k distances
For each point Q in the remaining points:
if dist(P, Q) is less than max(S)
removeMax from S
Insert dist(P, Q) in S

3. Priority queues: Job schedulers

Among all the job in a queue, get the job with the highest priority: removeMax(Priority Queue)



Problems

min

max(S)
removeMax from S

removeMax(Priority Queue)



Desired behavior: Get extreme values (min or max)

min

max(S)
removeMax from S

removeMax(Priority Queue)



Min Priority Queue ADT

- Collection where elements ordered based on priority.

- Behavior:
- return element with smallest priority, removes element

from collection
- find, but do not remove, the element with smallest priority

- - add element to the collection

- Max Priority Queue ADT:
- Same as Min Priority Queue ADT, just returns the largest instead of the smallest



Binary heap data structure

- Invented in 1964 for sorting
- Priority Queues is one of the main applications for binary heaps
- Lots of other applications: greedy algorithms, shortest path

- Basically, min-heap (or max-heap) is ideal when you want to
maintain a collection of elements where you need to add arbitrary
values but need an efficient removeMin (or removeMax).



Binary heap
Binary heap is a
1. binary tree

2. that satisfies the heap property, and
3. where every heap is a “complete” tree



Binary heap: Heap property



Binary heap: Heap property

max-heap. Every node is larger than (or equal to) its children



Binary heap: Heap property

max-heap. Every node is larger than (or equal to) its children
min-heap: Every node is smaller than (or equal to) its children



Binary heap: Complete binary tree

A complete binary tree is a binary tree in which every level, except

possibly the last, is completely filled, and all nodes are as far left as
possible.

There are no “gaps” in a complete tree.



Complete binary tree

Complete binary tree

depth O

depth 1

depth 2

depth 3 @

There as not complete binary trees



Question: Valid min-heap?

Complete binary tree?
Heap property satisfied?

@;D@ 5



Question: Valid min-heap?

Complete binary tree?
Heap property satisfied?

@;D@ 5



Question: Valid min-heap?

Complete binary tree?
Heap property satisfied?



Question: Valid min-heap?

0 Complete binary tree?

\
A




Binary heap insert

PPN
O



Binary heap insert

o) (12,



Binary heap insert

R
© @



Binary heap insert

insert(12)
insert(7) /@

0 @



Binary heap insert

insert(12)
insert(7)

O/R@Q

Heap broken

)




Binary heap insert

insert(12)
insert(7)

O/R@@

Heap broken

)




Binary heap insert

insert(12)
insert(7) /@

0 @



Binary heap insert

insert(12)
insert(7)

insert(1)

C/R@@



Binary heap insert

insert(12)
insert(7)

insert(1)

O/R :
ololo



Binary heap insert

insert(12)
insert(7)

insert(1)

O/R :
oo

Heap broken




Binary heap insert

insert(12)
insert(7)

insert(1)

O/R :
olola

Heap broken



Binary heap insert

insert(12)
insert(7)

insert(1)

O/R :
olola

Heap broken



Binary heap insert

insert(12)
insert(7)

insert(1)

O/R :
olola

Heap broken



Binary heap insert

insert(12)
insert(7)

insert(1)

O/R :
olola



Binary heap insert

percolateUp
insert(12)

insert(7)
1nsert(1)

0 @@



Binary heap removeMin

removeMin () %

0 @@



Binary heap removeMin

removeMin () /Oﬁ

0 @@



Binary heap removeMin

removeMin () %

0 @



Binary heap removeMin

removeMin () /‘%

@@@ o

Heap broken



percolateDown

Binary heap removeMin
removeMin()

/@

0 @

Heap broken




percolateDown

Binary heap removeMin
removeMin()

/'<

0 @

Heap broken




percolateDown

Binary heap removeMin
removeMin()

/@

0 @

Heap broken




Binary heap removeMin

percolateDown
removeMin()

(42 & ®
) @



Binary heap: removeMin() runTime



Binary heap: removeMin() runTime

findLastNodeTime + removeRootTime + numOfSwaps * swapTime



Binary heap: removeMin() runTime

findLastNodeTime + removeRootTime + numOfSwaps * swapTime

n+1+1logn)*1=0(n)



Binary heap: removeMin() runTime

findLastNodeTime + removeRootTime + numOfSwaps * swapTime
n+1+1logn)*1=0(n)

How can we do better?



Binary heap: removeMin() runTime

findLastNodeTime + removeRootTime + numOfSwaps * swapTime
n+1+1logn)*1=0(n)

How can we do better?
What do we make efficient in the above expression”

38



Array implementation of a complete binary tree

o e




Array implementation of a complete binary tree




Binary heap: Array implementation




Binary heap: Array implementation

e

(2)

Indices 0 1 2 3 4 5 6 7 8 Q 10 11 12




Binary heap: Array implementation

S e

000

Indices 0 1 2 3 4 5 6 7 8 Q 10 11 12




Binary heap: Array implementation

ORI
0000000

Indices 0 1 2 3 4 5 6 7 8 Q 10 11 12




Binary heap: Array implementation

0000000000

Indices 0 1 2 3 4 5 6 7 8 Q 10 11 12




leftChild(i) = 2i

rightChild(i) = 2i + 1

parent(i) =1 / 2

Binary heap: Array implementation

(2)

00

(4

()

(1207

4

5

9 10 11 12




