More on Hashing

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker
Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...


mailto:shri@cs.washington.edu

Announcements

- Midterm info and practice material (past quarter midterms) are online.
https://courses.cs.washington.edu/courses/cse373/18au/exams.html

- Midterm review sessions: 10/31 lecture and Section 05 (11/01)

- Thoughts on in-class feedback collected last Friday

CSE 373 AU 18 — SHRI MARE


https://courses.cs.washington.edu/courses/cse373/18au/exams.html

Midterm Topics

For more info visit course website: https: //courses.cs.washington.edu /courses /cse373/18au/exams.html

ADT and data structures:

Difference between them, runtimes, ...

Asymptotic analysis:
Finding c and n0O, Modeling runtime, looking at a code or a model and giving Big-O runtimes,
Definitions of Big-O, Big-Omega, Big-Theta

Trees:
Doing operations on trees, runtimes, AVL rotations

Hash tables:

collision strategies, basics of good hash function, doing inserts in a hash table

Design decisions and testing:
Given a scenario, choose a data structure and explain your choice.
Pros and cons of different implementation
How to construct different test cases

CSE 373 AU 18 — SHRI MARE


https://courses.cs.washington.edu/courses/cse373/18au/exams.html

Today

- Pros and Cons of different hash collision strategies
- Other applications of hashing

- Average-case analysis

CSE 373 AU 18 — SHRI MARE

4



Open Addressing

- Open addressing is a collision resolution strategy where collisions are resolved by storing
the colliding key in a different location when the natural choice is full.

put(21, value2?l) 20
13

Note: For simplicity, the table shows only keys, but

in each slot both, key and value, are stored.

CSE 373 AU 18 — SHRI MARE



put(42, k)

Separate chaining

Collision avoidance strategies

(1, a)

v Yoy

(22, 2)

(13, ¢)

(7, d)

Linear Probing

(7, d)

Quadratic Probing

(7, d)

CSE 373 AU 18 — SHRI MARE



Worksheet Q1-Q4

Do worksheet questions Q1-Q4

CSE 373 AU 18 — SHRI MARE 7



Worksheet Q1

Separate chaining

'y

(7, a)

(1, c)

(16, 2)

Linear Probing

(7, a)

(1, ¢)

(16, 2)

Quadratic Probing

(7, )
(1, ¢
(16, 2)

CSE 373 AU 18 — SHRI MARE



Worksheet Q2

16124187 ,alice12,Alice,Smith,AG,JUNIOR,Electrical Engineering,alice12@uw.edu

CSE 373 AU 18 — SHRI MARE



Worksheet Q3

A. 10 — all keys hash to either 0 or 5 (collisions!)
B. 15 — all keys hash to 0 (lots of collisions!!)

C. 7 — Fewer collisions but wasted table size

D. 9 — Fewer collisions, but one wasted space

E. 11 — Fewer collisions, no wasted space. (answer)

CSE 373 AU 18 — SHRI MARE 10



Worksheet Q4

Do mod by TableSize

array index = h(k,i) % array.length

CSE 373 AU 18 — SHRI MARE 1



Hash function with collision resolution

We can express our hash function as h(k,7) = h(k) + f(k,1)

where

h is the hash function,

1 is the attempt to find a slot, and
f is the resolution function.

e For separate chaining: f(k,7) =0
e For linear probing: f(k,i) =i

e For quadratic probing: f(k,1) = °

CSE 373 AU 18 — SHRI MARE 12



Hash function with collision resolution

We can express our hash function as h(k,7) = h(k) + f(k,1)

where
h is the hash function,

1 is the attempt to find a slot, and
f is the resolution function.

For separate chaining: f(k,7) =0
For linear probing: f(k,7) =1

For quadratic probing: f(k,) = i°
For double hashing: f(k,7) =1 * g(k)

where g is some new hash function

CSE 373 AU 18 — SHRI MARE

13



Clustering: Disadvantage of open addressing

Linear Probing Quadratic Probing
(7, a) (7, a)
(1, c) (1, )
(16, 2) (16, 2)
(8, a)
(14, b) (14, b)
(8, a)

Linear probing leads to primary clustering

CSE 373 AU 18 — SHRI MARE 14



How find works

Separate chaining Linear Probing
—» (7, a) (7, a)
— (1,c) B (8, a) (1, c)
— (16, 2) (16, 2)
8, a)
| (14, b) (14, b)

Quadratic Probing

(7, a)
(1, c)
(16, 2)

(14, b)
(8, a)

CSE 373 AU 18 — SHRI MARE 15



How delete works

Separate chaining Linear Probing Quadratic Probing
—> 7.3 (7, a) (7, a)
—» (1,0) | (8,2 (1, c) (1, )
—>| (16, 2) (16, 2) (16, 2)
8, a)
->-{ (14, b) (14, b) (14, b)
8, a)

CSE 373 AU 18 — SHRI MARE 16



Resizing

How do we resize?
Remake the table
Evaluate the hash function over again.
Re-insert.

When to resize?
Depending on our load factor A
Heuristic:
for separate chaining 4 between 1 and 3 is a good time to resize.
For open addressing A between 0.5 and 1 is a good time to resize.



Separate chaining: Running Times

What are the running times for:
insert
Best: O(1)
Worst: 0(n) (if insertions are always at the end of the linked list)
find
Best: O(1)
Worst: 0(n)
delete

Best: O(1)
Worst: 0(n)

CSE 332 SU 18 — ROBBIE WEBER



Separate chaining: Average Case

What about on average?
Let's assume that the keys are randomly distributed

What is the average running time if the size of the table TableSize and
we've inserted n keys?

insert
find
delete

CSE 332 SU 18 — ROBBIE WEBER



Separate chaining: Average Case

What about on average?
Let's assume that the keys are randomly distributed

What is the average running time if the size of the table TableSize and
we've inserted n keys?

insert 0(1)

find 0(1+ L )
TableSize

delete 0(1+ - : )
TableSize

CSE 332 SU 18 — ROBBIE WEBER



Separate chaining: Average Case

What about on average?
Let's assume that the keys are uniformly distributed

What is the average running time if the size of the table TableSize and
we've inserted n keys?

insert 0(1)

find O(1+ A1) " is A load factor
TableSize
delete 0(1+ A)

CSE 332 SU 18 — ROBBIE WEBER



Linear probing: Average-case insert

If A <1 we'll find a spot eventually.
What's the average running time?

Uniform Hashing Assumption

for any pair of elements x, y

ofe — . 1
the probability that h(x) = h(y) is e

L 1 1
It find is unsuccesstul: - (1 + (1_1)2)

L 1 1
It find is successtul: - (1 + (1_1))

We won't ask you to prove these

CSE 332 SU 18 — ROBBIE WEBER



Summary

Separate Chaining
Easy to implement
Running times 0(1 + A)

Open Addressing
Uses less memory.
Various schemes:
Linear Probing — easiest, but need to resize most frequently
Quadratic Probing — middle ground
Double Hashing — need a whole new hash function, but low chance of clustering.

Which you use depends on your application and what you're worried
about.



Other applications of hashing

- Cryptographic hash functions: Hash functions with some additional properties
Commonly used in practice: SHA-1, SHA-265

To verify file integrity. When you share a Iar%e file with someone, how do you know that the other person got the exact
same file? Just compare hash of the file on both ends. Used by file sharing services (Google Drive, Dropbox)

For password verification: Storing passwords in plaintext is insecure. So your passwords are stored as a hash.
For Digital signature
Lots of other crypto applications

- Finding similar records: Records with similar but not identical keys
Spelling suggestion/corrector applications
Audio/video fingerprinting
Clustering

- Finding similar substrings in a large collection of strings
Genomic databases
Detecting plagiarism

- Geometric hashing: Widely used in computer graphics and computational geometry

CSE 373 AU 18 — SHRI MARE 24



Wrap Up

Hash Tables:
Efficient find, insert, delete on average, under some assumptions
ltems not in sorted order
Tons of real world uses
...and really popular in tech interview questions.

Need to pick a good hash function.
Have someone else do this if possible.
Balance getting a good distribution and speed of calculation.

Resizing:
Always make the table size a prime number.
A determines when to resize, but depends on collision resolution strategy.



