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- Problem: Can we make get(k) operation on dictionaries fast: O(1)
- Motivation
- Hashing
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AVL Trees: Four cases to consider
Insert location Case Solution

Left subtree of left child of y (A) Left line case Single right rotation

Right subtree of left child of y (B) Left kink case Double (left-right) rotation

Left subtree of right child of y (C) Right kink case Double (right-left) rotation

Right subtree of right child of y (D) Right line case Single left rotation
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AVL Trees: Four cases to consider
Insert location Case (also called as) Solution

Left subtree of left child of y (A) Left line case (case 1) Single right rotation

Right subtree of left child of y (B) Left kink case (case 2) Double (left-right) rotation

Left subtree of right child of y (C) Right kink case (case 3) Double (right-left) rotation

Right subtree of right child of y (D) Right line case (case 4) Single left rotation
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AVL Tree: Practice. Insert(6)
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AVL Tree: Practice
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AVL Trees: Four cases to consider
Insert location Case (also called as) Solution

Left subtree of left child of y (A) Left line case (case 1) Single right rotation

Right subtree of left child of y (B) Left kink case (case 2) Double (left-right) rotation

Left subtree of right child of y (C) Right kink case (case 3) Double (right-left) rotation

Right subtree of right child of y (D) Right line case (case 4) Single left rotation
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AVL Tree: Practice
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AVL Tree: Practice
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Worksheet Q1
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Worksheet Q1
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Worksheet Q1
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1. Do a BST insert – insert a node as you would in a BST.
2. Check balance condition at each node in the path from the inserted node to the root.
3. If balance condition is not true at a node, identify the case
4. Do the corresponding rotation for the case

AVL Tree insertions

CSE 373 AU 18 – SHRI MARE 14



Draw the AVL tree that results from inserting the keys 1, 3, 7, 5, 6, 9 in that order into an 
initially empty AVL tree. (Hint: Drawing intermediate trees as you insert each key can help.)

Worksheet Q2
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How long does AVL insert take?
AVL insert time = BST insert time + time it takes to rebalance the tree

= O(log n) + time it takes to rebalance the tree

How long does rebalancing take?
-Assume we store in each node the height of its subtree.
-How long to find an unbalanced node:

- Just go back up the tree from where we inserted.
-How many rotations might we have to do?

- Just a single or double rotation on the lowest unbalanced node. 

AVL insert time = O(log n)+ O(log n) + O(1) = O(log n)
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Pros:
- O(log	n) worst case for find, insert, and delete operations.
- Reliable  running times than regular BSTs (because trees are balanced)

Cons:
- Difficult to program & debug [but done once in a library!]
- (Slightly) more space than BSTs to store node heights.

AVL wrap up
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Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:
AVL tree
Splay tree
2-3 tree
AA tree
Red-black tree
Scapegoat tree
Treap

(From https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

(Not covered in this class, but several are in the 
textbook and all of them are online!)
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- HW3 out. Due this Friday (10/26) at Noon (not at the usual time 11:59pm)
- HW4 out later today (or latest by tomorrow morning). Due next Tuesday (10/30)

- Midterm coming up – Nov 2, 2:30-3:20pm, here in the class
- If you can’t take the midterm on Nov 2, let me know ASAP.
- Midterm practice material will be posted on the website tomorrow
- Midterm review next Wednesday

Announcements
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Hash tables
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- data = (key, value)
- operations: put(key, value);   get(key);   remove(key)

- O(n)  with Arrays and Linked List
- O(log n) with BST and AVL trees.

- Can we do better? Can we do this in O(1)  ?

Revisiting Dictionaries
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Why we are so obsessed with making dictionaries fast?

Dictionaries are extremely most common data structures.
- Databases
- Network router tables
- Compilers and Interpreters
- Faster than O(log n) search in certain cases
- Data type in most high level programming languages

Motivation
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How would you implement at dictionary such that dictionary operations are O(1)? 
(Assume all keys are non-zero integers)

Question
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How would you implement at dictionary such that dictionary operations are O(1)? 
(Assume all keys are non-zero integers)

Idea: Create a giant array and use keys as indices

Question

CSE 373 AU 18 – SHRI MARE 25



How would you implement at dictionary such that dictionary operations are O(1)? 
(Assume all keys are non-zero integers)

Idea: Create a giant array and use keys as indices

Problems?
1. ?
2. ?

Question
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How would you implement at dictionary such that dictionary operations are O(1)? 
(Assume all keys are non-zero integers)

Idea: Create a giant array and use keys as indices

Problems?
1. Can only work with integer keys?
2. Too much wasted space

Idea 2: Can we convert the key space into a smaller set that would take much less memory

Question
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Solve problem: Too much wasted space
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Review: Integer remainder with %
The % operator computes the remainder from integer division.
14 % 4 is  2

3 43
4 ) 14              5 ) 218

12 20
2 18

15
3

Applications of % operator:
- Obtain last digit of a number: 230857 % 10 is 7
- See whether a number is odd: 7 % 2 is 1,  42 % 2 is 0
- Limit integers to specific range: 8 % 12 is 8, 18 % 12 is 6
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Implement Direct Access Map
public V get(int key) {

// input validation
return this.array[key].value;

}

public void put(int key, V value) {
this.array[key] = value;

}

public void remove(int key) {
// input validation
this.array[key] = null;

}
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Implement First Hash Function
public V get(int key) {

// input validation
int newKey = key % this.array.length;
return this.array[newkey].value;

}

public void put(int key, V value) {
this.array[key % this.array.length] = value;

}
public void remove(int key) {

// input validation
int newKey = key % this.array.length;
this.array[newKey] = null;

}
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First Hash Function: % table size
indices 0 1 2 3 4 5 6 7 8 9

elements

CSE 373 SP 18 - KASEY CHAMPION 32

put(0, “foo”);
put(5, “bar”);
put(11, “biz”)
put(18, “bop”);
put(20, “poo”); Collision!

“foo”

0 % 10 = 0
5 % 10 = 5
11 % 10 = 1
18 % 10 = 8
20 % 10 = 0

“bop”“bar”“biz”

“poo”



√ Wrap up AVL Trees
√ Problem: Can we make get(k) operation on dictionaries fast: O(1)
√ Motivation
√ Hashing
- Separate Chaining

Today
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Hashing: Separate Chaining
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