
AVL Trees

CSE 373: Data Structures and Algorithms

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker
Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

mailto:shri@cs.washington.edu

So far
- List
- Dictionaries
- Add and remove operations on dictionaries implemented with arrays or lists are O(n)
- Trees, BSTs in particular, offer speed up because of their branching factors
- BSTs are in the average case, but not in the worse case

Today
- Can we do better? Can we adapt our BST so we never get the worst case

Outline

CSE 373 AU 18 – SHRI MARE 2

Insert() Find() Remove()

Average case O(log n) O(log n) O(log n)

Worst case O(n) O(n) O(n)

Review: Worksheets

CSE 373 AU 18 – SHRI MARE 3

BST: the shallower the better!

For a BST with n nodes inserted in arbitrary order

– Average height is O(log n)

– Worst case height is O(n)

Solution: Require a Balance Condition that

Simple cases such as inserting in key order lead to the worst-case scenario

1. ensures depth is always O(log n) – strong enough!

2. is easy to maintain – not strong enough!

Balanced BST observation

CSE 332 WI 18 – RUTH ANDERSON 4

AVL trees: Balanced BSTs
AVL Trees must satisfy the following properties:
- binary trees: every node must have between 0 and 2 children

- binary search tree (BST property): for every node, all keys in the left subtree must be smaller and all keys in the
right subtree must be larger than the root node

- Balanced (AVL property): for every node, there can be no more than a difference of 1 in the height of the left
subtree from the right. Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

The AVL property:

1. ensures depth is always O(log n) – Yes!

2. is easy to maintain – Yes! (using single and double rotations)

CSE 373 AU 18 – SHRI MARE 5

Potential balance conditions (1)

CSE 332 WI 18 – RUTH ANDERSON 6

Potential balance conditions (1)

CSE 332 WI 18 – RUTH ANDERSON 7

Potential balance conditions (2)

CSE 332 WI 18 – RUTH ANDERSON 8

Potential balance conditions (2)

CSE 332 WI 18 – RUTH ANDERSON 9

AVL balance condition

AVL condition: For every node, the height of its left subtree and right subtree differ by at
most 1.

balance(node) = Math.abs(height(node.left) – height(node.right))

AVL condition: for every node, balance(node) ≤ 1

CSE 373 AU 18 – SHRI MARE 10

Worksheet (Q9)

CSE 373 AU 18 – SHRI MARE 11

Insertion
What happens if when we do an insert(3), we break the AVL condition?

1

2

3
1

2

3

CSE 332 SU 18 – ROBBIE WEBER

Left Rotation

x

y

z

Rest of the
tree UNBALANCED

Right subtree is 2 longer

A
B

C D

x

y

z

Rest of the
tree

A B

C D

BALANCED
Right subtree is 1 longer

CSE 332 SU 18 – ROBBIE WEBER

Tree Rotations: Right rotation

CSE 373 SU 18 – BEN JONES 14

X

A

W

C

B

Y Z

It Gets More Complicated

1

3

2

Can’t do a left rotation
Do a “right” rotation around 3 first.

1

3

2

Now do a left rotation.

1

2

3

There’s a “kink” in
the tree where the
insertion happened.

CSE 332 SU 18 – ROBBIE WEBER

Right Left Rotation

x

z

y

Rest of the
tree

A

B C

D

x

y

z

Rest of the
tree

A

B

C D

BALANCED
Right subtree is 1 longerUNBALANCED

Right subtree is 2 longer

Left subtree is
1 longer

CSE 332 SU 18 – ROBBIE WEBER

Four cases to consider

x

y

z

A

B C

D

Insert location Solution

Left subtree of left child of y Single right rotation

Right subtree of left child of y Double (left-right)
rotation

Left subtree of right child of y Double (right-left)
rotation

Right subtree of right child of y Single left rotation

CSE 332 SU 18 – ROBBIE WEBER

Four cases to consider

CSE 373 AU 18 – SHRI MARE 18

x

y

z

A

B C

D

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 19

8

9

10

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 20

8

9

10

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 21

8

11

9

10

12

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 22

8

11

9

10

12

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 23

8

9

10

11

12

15

5

9

8 10

23

71

75

20

4

Worksheet (Q10A)

CSE 373 AU 18 – SHRI MARE 24

Worksheet (Q10B)

CSE 373 AU 18 – SHRI MARE 25

15

5

9

8 10

23

71

75

20

6

How Long Does Rebalancing Take?
Assume we store in each node the height of its subtree.
How do we find an unbalanced node?

How many rotations might we have to do?

CSE 332 SU 18 – ROBBIE WEBER

How Long Does Rebalancing Take?
Assume we store in each node the height of its subtree.
How do we find an unbalanced node?
-Just go back up the tree from where we inserted.

How many rotations might we have to do?
-Just a single or double rotation on the lowest unbalanced node.
-A rotation will cause the subtree rooted where the rotation happens to have the
same height it had before insertion.

CSE 332 SU 18 – ROBBIE WEBER

Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:
AVL tree
Splay tree
2-3 tree
AA tree
Red-black tree
Scapegoat tree
Treap

(From https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

(Not covered in this class, but several are in the
textbook and all of them are online!)

CSE 373 SU 17 – LILIAN DE GREEF

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/2-3_tree
https://en.wikipedia.org/wiki/AA_tree
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/Scapegoat_tree
https://en.wikipedia.org/wiki/Treap
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree

