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How do we compare two piece of code? Lots of metrics we could pick!

- Time needed to run
- Memory used
- Number of network calls made
- Amount of data we save to the disk
- Specialized vs. generic
- Code reusability
- Security

(Some metrics are intangible and hard to measure those, e.g., security, code reusability)

Today: Focus on comparing algorithms based on how long it takes them to run in the worst case.

Code	Analysis
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Algorithm Time (in ms)

Algorithm 1 1

Algorithm 2 30

Algorithm 3 100

Which	of	these	algorithms	is	better?
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This is a trick question. Why isn’t this table enough to let us decide 
which algorithm is better?



Which	of	these	algorithms	is	better?
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We want:

- To see overall trends as input increases
- Considering a single data point isn’t helpful
- We really care about large inputs

- Final result is independent of incidental factors
- (CPU speed, programming language, other programs running, etc.)

- Rigorously discover overall trends without resorting to testing
- What if we miss worst-case input?

- A way to analyze before coding!

Comparing	Algorithms
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What	Are	We	Counting?

Worst case analysis
- For a given input size, what’s the running time for the worst state our data structure we can be in 
or the worst input we can give?

Best case analysis
- What is the number of steps for the best state of our structure and the best question?

Average case analysis
- How are we doing on average over all possible inputs/states of our data structure?
- Have to ask this question very carefully to get a meaningful answer

We usually do worst case analysis.
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1. Model what we care about as a mathematical function

2. Analyze that function using asymptotic analysis

Asymptotic	Analysis:	Two	step	process
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Consecutive statements
- Sum of time of each statement

Function calls
- Time of function’s body

Conditionals
- Time of condition + max(if branch, else branch)

Loops
- Number of iterations x time of loop body

Modeling:	What	Are	We	Counting?
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Modeling:	Assumptions

Assume basic operations take the same constant amount of time.
What’s a basic operation?
-Adding ints or doubles
-Assignment
- Incrementing a variable
-A return statement
-Accessing an array index or an object field

What’s not a basic operation?
-Making a method call.

This is a LIE but it’s a very useful lie.
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Modeling	Case	Study
Goal: return ‘true’ if a sorted array of ints contains duplicates

Solution 1: compare each pair of elements
public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++) {
for (int j = 0; j < array.length; j++) {

if (i != j && array[i] == array[j]) {
return true;

}
}

}
return false;

}

Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++) {
if (array[i] == array[i + 1]) {

return true;
}

}
return false;

}
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Modeling	Case	Study:	Solution	2
T(n) where n = array.length

Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++) {
if (array[i] == array[i + 1]) {

return true;
}

}
return false;

}

T(n) = 4 (n-1) + 1
linear time complexity class O(n)
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Modeling	Case	Study:	Solution	1
Solution 1: compare each consecutive pair of elements
public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++) {
for (int j = 0; j < array.length; j++) {

if (i != j && array[i] == array[j]) {
return true;

}
}

}
return false;

}

T(n) = 5 n2 + 1
quadratic time complexity class O(n2)
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1. Model what we care about as a mathematical function

2. Analyze that function using asymptotic analysis
- Specifically: have a way to compare two functions
- Even more specifically: define a “less then or equal to” operator for functions

Asymptotic	Analysis:	Two	step	process
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