
Asymptotic	Analysis

CSE 373: Data Structures and Algorithms

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker 
Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu



How do we compare two piece of code? Lots of metrics we could pick!

- Time needed to run
- Memory used
- Number of network calls made
- Amount of data we save to the disk
- Specialized vs. generic
- Code reusability
- Security

(Some metrics are intangible and hard to measure those, e.g., security, code reusability)

Today: Focus on comparing algorithms based on how long it takes them to run in the worst case.

Code	Analysis

CSE	373	WI	18	– SHRI	MARE 2



Algorithm Time (in ms)

Algorithm 1 1

Algorithm 2 30

Algorithm 3 100

Which	of	these	algorithms	is	better?

CSE	373	WI	18	– MICHAEL	LEE 3

This is a trick question. Why isn’t this table enough to let us decide 
which algorithm is better?



Which	of	these	algorithms	is	better?

CSE	373	WI	18	– MICHAEL	LEE 4



We want:

- To see overall trends as input increases
- Considering a single data point isn’t helpful
- We really care about large inputs

- Final result is independent of incidental factors
- (CPU speed, programming language, other programs running, etc.)

- Rigorously discover overall trends without resorting to testing
- What if we miss worst-case input?

- A way to analyze before coding!

Comparing	Algorithms

CSE	373	WI	18	– MICHAEL	LEE 5



What	Are	We	Counting?

Worst case analysis
- For a given input size, what’s the running time for the worst state our data structure we can be in 
or the worst input we can give?

Best case analysis
- What is the number of steps for the best state of our structure and the best question?

Average case analysis
- How are we doing on average over all possible inputs/states of our data structure?
- Have to ask this question very carefully to get a meaningful answer

We usually do worst case analysis.

CSE	332	SU	18	- ROBBIE	WEBER 6



1. Model what we care about as a mathematical function

2. Analyze that function using asymptotic analysis

Asymptotic	Analysis:	Two	step	process

CSE	373	WI	18	– MICHAEL	LEE 7



Consecutive statements
- Sum of time of each statement

Function calls
- Time of function’s body

Conditionals
- Time of condition + max(if branch, else branch)

Loops
- Number of iterations x time of loop body

Modeling:	What	Are	We	Counting?

CSE	373	WI	18	– MICHAEL	LEE 8



Modeling:	Assumptions

Assume basic operations take the same constant amount of time.
What’s a basic operation?
-Adding ints or doubles
-Assignment
- Incrementing a variable
-A return statement
-Accessing an array index or an object field

What’s not a basic operation?
-Making a method call.

This is a LIE but it’s a very useful lie.

CSE	332	SU	18	- ROBBIE	WEBER 9



Modeling	Case	Study
Goal: return ‘true’ if a sorted array of ints contains duplicates

Solution 1: compare each pair of elements
public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++) {
for (int j = 0; j < array.length; j++) {

if (i != j && array[i] == array[j]) {
return true;

}
}

}
return false;

}

Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++) {
if (array[i] == array[i + 1]) {

return true;
}

}
return false;

}

CSE	373	WI 18	– MICHAEL	LEE 10



Modeling	Case	Study:	Solution	2
T(n) where n = array.length

Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++) {
if (array[i] == array[i + 1]) {

return true;
}

}
return false;

}

T(n) = 4 (n-1) + 1
linear time complexity class O(n)

CSE	373	WI 18	– MICHAEL	LEE 11



Modeling	Case	Study:	Solution	1
Solution 1: compare each consecutive pair of elements
public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++) {
for (int j = 0; j < array.length; j++) {

if (i != j && array[i] == array[j]) {
return true;

}
}

}
return false;

}

T(n) = 5 n2 + 1
quadratic time complexity class O(n2)

CSE	373	WI 18	– MICHAEL	LEE 12



1. Model what we care about as a mathematical function

2. Analyze that function using asymptotic analysis
- Specifically: have a way to compare two functions
- Even more specifically: define a “less then or equal to” operator for functions

Asymptotic	Analysis:	Two	step	process

CSE	373	WI	18	– MICHAEL	LEE 13


