
Lecture	1:	CSE	373 Data Structures and Algorithms

1

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Whitaker Brand,
Stuart Reges, Zora Fung, Justin Hsia, and many others for sample slides and materials ...

2

Agenda

-Introductions
-Administrative stuff
-Class overview
-Review some 143 concepts
-Meet the ADT

Waitlist

-No Overloads
-Many students move around, likely a spot will open
-Email cse373@cs.washington.edu for all registration
requests/questions

3

Shrirang (Shri) Mare

Hello!

Postdoc in CSE, Security & Privacy
Before UW: PhD at Dartmouth, Software Developer at IBM
shri@cs.washington.edu
CSE 360
Office Hours: Wednesdays 3:30-6:30

Course	Goals
At the end of this class, you should be able to…
- Implement your own data structures
- Figure out which data structure AND implementation is best to solve a problem
- Write tests to be confident that your implementation are correct
- Work collaboratively with others on code
- Use with professional software engineering tools

Tell me your course goals: Pre-Course Survey

5

Communication
Website

- Schedule, course calendar, policies, material, assignments, etc.

Canvas
- Grades will be posted here

Google Discussion Board
- Announcements made here
- Ask and answer questions – staff will monitor and contribute

Office Hours
- Spread throughout the week, by appointment

Email
- To staff: cse373-staff@cs.washington.edu
- To individuals: Include “[CSE-373]” in your subject

Anonymous feedback
- Comments about anything related to the course where you would feel better not attaching your name

6

Grade	Break	Down
Homework (65%)
- Projects (50%)

- Partners encouraged

- Written Assignments (15%)
- Must be individual

Exams (35%)
- Midterm Exam – Friday Nov 2 in class (15%)
- Final Exam – Tuesday Dec 11 (20%)

7

Deadlines	and	Student	Conduct
Late policies
- 3 late day “tokens” for the quarter, max 2 per submission
- For pair projects, both partners will need to use their late day(s)
- Need to get things done on time – difficult to catch up!

Academic Integrity
- Name your collaborators
- Credit your sources
- I will trust you implicitly and will follow up if that trust is violated
- In short: don’t attempt to gain credit for something you didn’t do and don’t help others do so either
- This does not mean suffer in silence – can still learn from the course staff and peers

8

Class	Style
Please come to lecture and participate
- Collaboration
- Demos
- Participate:

- Answer questions – don’t worry about it being right or wrong
- Ask questions! Point out mistakes!

Sections
- TAs = heroes
- Practice problems
- Sections start next week

Getting help
- The internets
- Each other
- Office hours and Sections

Textbook
- Optional!
- Data Structures and Algorithm Analysis in Java by Mark Allen Weiss

9

Hooked	on	Gadgets
Gadgets reduce focus and learning
- Bursts of info (e.g. emails, IMs, etc.) are addictive
- Heavy multitaskers have more trouble focusing and shutting out irrelevant information

- http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away

- Seriously, you will learn more if you use paper instead!!!

Non-disruptive use okay
- NO audio allowed (mute phones & computers)
- Stick to side and back seats
- Stop/move if asked by fellow student

10CSE	333	SP	18	– JUSTIN HSIA

Questions?

11

What	is	this	class	about?

CSE	143	– OBJECT	ORIENTED	PROGRAMMING

12

-Classes and Interfaces
-Methods, variables and conditionals
-Loops and recursion
-Linked lists and binary trees
-Sorting and Searching
-O(n) analysis
-Generics

CSE	373	– DATA	STRUCTURES	AND	ALGORITHMS

-Design decisions
-Design analysis
- Implementations of data structures
-Debugging and testing
-Abstract Data Types
-Code-base development

Data Structures and Algorithms

CSE	373	SP	18	- KASEY	CHAMPION 13

What	are	they	anyway?

Basic	Definitions

Data Structure
-A way of organizing and storing related data points
-Examples from CSE 14X: arrays, linked lists, stacks, queues, trees

Algorithm
-A series of precise instructions used to perform a task
-Examples from CSE 14X: binary search, merge sort, recursive backtracking

CSE	373	SP	18	- KASEY	CHAMPION 14

Review: Clients	vs	Objects

CLIENT	CLASSES

CSE	143	WI 18	– WHITAKER	BRAND 15

A class that is executable, in Java this means it
contains a Main method
public static void main(String[] args)

OBJECT	CLASSES

A coded structure that contains data and
behavior

Start with the data you want to hold, organize
the things you want to enable users to do with
that data

Abstract	Data	Types	(ADT)
Abstract Data types
- A definition for expected operations and behavior

Start with the operations you want to do then define how those operations will play out on
whatever data is being stored

CSE	143	WI	18	– STUART	REGES 16

- each element is accessible by a 0-based index
- a list has a size (number of elements that have been added)
- elements can be added to the front, back, or elsewhere
- in Java, a list can be represented as an ArrayList object

Review: List - a collection storing an ordered sequence of elements

Review:	Interfaces
interface: A list of methods that a class promises to
implement.
- Interfaces give you an is-a relationship without code sharing.

- A Rectangle object can be treated as a Shape but inherits no code.

- Analogous to non-programming idea of roles or certifications:
- "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."
- "I'm 'certified' as a Shape, because I implement the Shape interface.

This assures you I know how to compute my area and perimeter."

public interface name {
public type name(type name, ..., type name);
public type name(type name, ..., type name);
...
public type name(type name, ..., type name);

}

CSE	143	SP	17	– ZORA FUNG 17

Example

// Describes features common to all
// shapes.
public interface Shape {

public double area();
public double perimeter();

}

Review: Java	Collections
Java provides some implementations of ADTs for you!

You used:

Lists List<Integer> a = new ArrayList<Integer>();

Stacks Stack<Character> c = new Stack<Character>();

Queues Queue<String> b = new LinkedList<String>();

Maps Map<String, String> d = new TreeMap<String, String>();

But some data structures you made from scratch… why?

Linked Lists - LinkedIntList was a collection of ListNode

Binary Search Trees – SearchTree was a collection of SearchTreeNodes

CSE	373	SP	18	- KASEY	CHAMPION 18

Full	Definitions
Abstract Data Type (ADT)
- A definition for expected operations and behavior
- A mathematical description of a collection with a set of supported operations and how they
should behave when called upon

- Describes what a collection does, not how it does it
- Can be expressed as an interface
- Examples: List, Map, Set

Data Structure
- A way of organizing and storing related data points
- An object that implements the functionality of a specified ADT
- Describes exactly how the collection will perform the required operations
- Examples: LinkedIntList, ArrayIntList

CSE	373	SP	18	- KASEY	CHAMPION 19

List	of	ADTs

-List
-Set
-Map
-Stack
-Queue
-Priority Queue
-Graph

CSE	373	SP	18	- KASEY	CHAMPION 20

Case	Study:	The	List	ADT

list: stores an ordered sequence of information.
-Each item is accessible by an index.
-Lists have a variable size as items can be added and removed

Supported Operations:
-get(index): returns the item at the given index
- set(value, index): sets the item at the given index to the given value
-append(value): adds the given item to the end of the list
- insert(value, index): insert the given item at the given index maintaining order
-delete(index): removes the item at the given index maintaining order
- size(): returns the number of elements in the list

CSE	373	SP	18	- KASEY	CHAMPION 21

Case	Study:	List	Implementations

- ArrayList

- Linked List

22

