
Section 06: Solutions

1. Heaps

(a) Insert the following sequence of numbers into a min heap:

[10, 7, 15, 17, 12, 20, 6, 32]

Solution:

6

10

17

32

12

7

20 15

(b) Now, insert the same values into a max heap.

Solution:

32

20

15

7

12

17

10 6

(c) Now, insert the same values into a min heap, but use Floyd’s buildHeap algorithm.

Solution:

6

7

17

32

12

10

20 15
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(d) Insert 1, 0, 1, 1, 0 into a min heap.

Solution:

0

0

1 1

1

(e) Call removeMin three times on the min heap stored as the following array: [1, 5, 10, 6, 7, 13, 12, 8, 15, 9] Solu-
tion:

[7, 8, 10, 9, 15, 13, 12]

2. Sorting

(a) Demonstrate how you would use quick sort to sort the following array of integers. Use the first index as the
pivot; show each partition and swap.

[6, 3, 2, 5, 1, 7, 4, 0]

Solution:

[Solutions omitted]

(b) Show how you would use merge sort to sort the same array of integers.

Solution:

[Solutions omitted]

(c) Suppose we have an array where we expect the majority of elements to be sorted “almost in order”. What
would be a good sorting algorithm to use?

Solution:

Merge sort and quick sort are always predictable standbys, but we may be able to get better results if we
try using something like insertion sort, which is O (n) in the best case.

Alternatively, we could try using an adaptive sort such as Timsort, which is specifically designed to handle
almost-sorted inputs efficiently while still having a worst-case O (n log(n)) runtime.
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3. Master Theorem

For each of the recurrences below, use the Master Theorem to find the big-Θ of the closed form or explain why
Master Theorem doesn’t apply.

Master Theorem:
Given a recurrence of the following form:

T (n) =

{
d if n ≤ some constant
aT (n/b) + nc otherwise

with a, b, c as constants.
If logb(a) < c then T (n) is Θ(nc)
If logb(a) = c then T (n) is Θ(nc logn)
If logb(a) > c then T (n) is Θ

(
nlogb(a)

)
(a) T (n) =

{
18 if n ≤ 5

3T (n/4) + n2 otherwise
Solution:

This is the correct form for Master Theorem. We want to compare log4(3) to 2. log4(3) is between 0 and
1 (since 40 < 3 < 41), so log4(3) < 2. We’re thus in the case where the answer is Θ

(
n2
)
.

(b) T (n) =

{
1 if n ≤ 1

9T (n/3) + n2 otherwise
Solution:

We want to compare log3(9) to 2. log3(9) is 2 (since 32 = 9) since the two things we’re comparing are
equal, we have Θ

(
n2 logn

)
as our final answer.

(c) T (n) =

{
1 if n ≤ 1

log(n)T (n/2) + n otherwise
Solution:

This recurrence is not in the right form to use the Master Theorem. The coefficient of T (n/2) needs to be
a constant, not a function of n.

(d) T (n) =

{
1 if n ≤ 19

4T (n/3) + n otherwise
Solution:

We want to compare log3(4) to 1. log3(4) is between 1 and 2 (since 31 < 4 < 32), so log3(4).1. In this
case, the Master Theorem says our result is Θ

(
nlog3(4)

)

(e) T (n) =

{
5 if n ≤ 24

2T (n− 2) + 5n3 otherwise
Solution:

This recurrence is not in the right form to use Master Theorem. It’s only applicable if we are dividing the
input size, not if we’re subtracting from it.
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4. Analyzing recurrences, redux

Consider the following recurrences. For each recurrence, (a) find a closed form using the tree method and (b) check
your answer using the master theorem.

(a) T (n) =

{
1 if n = 1

8T (n/2) + 4n2 otherwise

Solution:

Given this recurrence, we know...

• Size of input at level i is n/2i

• Number of nodes on level i: 8i

• Total work done per (recursive) level: 8i · 4
(
n
2i

)2
= 8i · 4 · n2

4i

• Last level of the tree: When n/2i = 1, i.e. log2(n)

• Total work done in base case: 1 · 8log2(n)

So we get the expression: log2(n)−1∑
i=0

8i · 4 · n
2

4i

+ 8log2(n)

We can simplify by pulling the 4n2 out of the summation:

4n2

log2(n)−1∑
i=0

8i

4i

+ 8log2(n)

This further simplifies to:

4n2

log2(n)−1∑
i=0

2i

+ 8log2(n)

After applying the finite geometric series identity, we get:

4n2 · 2
log2(n) − 1

2− 1
+ 8log2(n)

This is a closed form so we could stop, but if we want a tidy solution, we can continue simplifying:

T (n) = 4n2 · 2
log2(n) − 1

2− 1
+ 8log2 2(n)

= 4n2 ·
(
2log2(n) − 1

)
+ 8log2(n)

= 4n2 ·
(
nlog2(2) − 1

)
+ nlog2(8)

= 4n2 · (n− 1) + n3

= 5n3 − 4n2

We can apply the master thereom here. Note that logb(a) = log2(8) = 3 > 2 = c, which means that
T (n) ∈ Θ

(
nlogb(a)

)
which is T (n) ∈ Θ

(
nlog2 8

)
which in turn simplifies to T (n) ∈ Θ

(
n3
)
.

This agrees with our simplified form.
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(b) T (n) =

{
1 if n = 1

7T (n/3) + 18n2 otherwise

Solution:

Given this recurrence, we know...

• Size of the input at level i: n/3i

• Number of nodes on level i: 7i

• Total work done per (recursive) level: 7i · 18
(
n
3i

)2
= 7i · 18 · n2

9i

• Last level of the tree: log3(n)

• Total work done in base case: 1 · 7log3(n)

So we get the expression: log3(n)−1∑
i=0

7i · 18 · n
2

9i

+ 7log3(n)

We can simplify by pulling the 18n2 out of the summation:

18n2

log3(n)−1∑
i=0

7i

9i

+ 7log3(n)

This is equivalent to:

18n2

log3(n)−1∑
i=0

(
7

9

)i
+ 7log3(n)

After applying the finite geometric series identity, we get:

18n2 ·
(
7
9

)log3(n) − 1
7
9 − 1

+ 7log3(n)

This is a closed form so we could stop, but if we want a tidy solution, we can continue simplifying:

T (n) = 18n2 ·
(
7
9

)log3(n) − 1
7
9 − 1

+ 7log3(n)

= 18n2 ·
(
7
9

)log3(n) − 1

− 2
9

+ 7log3(n)

= −81n2 ·

((
7

9

)log3(n)

− 1

)
+ 7log3(n)

= −81n2 ·
(
nlog3(7/9) − 1

)
+ nlog3(7)

= −81n2 ·
(
nlog3(7)−2 − 1

)
+ nlog3(7)

= −81n2nlog3(7)−2 + 81n2 + nlog3(7)

= −80nlog3(7) + 81n2

5



We can apply the master thereom here. Note that logb(a) = log3(7) < 2 = c, which means that T (n) ∈
Θ(nc) which is T (n) ∈ Θ

(
n2
)

This agrees with our simplified form.

(c) T (n) =

{
1 if n = 1

T (n/2) + 3 otherwise

Solution:

Given this recurrence, we know...

• Input size at level i: n/2i

• Number of nodes on level i: 1i = 1

• Total work done per level: 1 · 3 = 3

• Last level of the tree: log2(n)

• Total work done in base case: 1 · 1log3(n) = 1

So we get the expression: log2(n)−1∑
i=0

3

+ 1

Using the summation of a constant identity, we get:

3 log2(n) + 1

We can apply the master thereom here. Note that logb(a) = log2(1) = 0 = c, which means that T (n) ∈
Θ(nc log(n)) which is T (n) ∈ Θ

(
n0 log(n)

)
which further simplifies to T (n) ∈ Θ(log(n)).

This agrees with our simplified form.

5. Divide and conquer

(a) Suppose we have an array of sorted integers that has been circularly shifted k positions to the right. For exam-
ple, [35, 42, 5, 10, 20, 30] is a sorted array that has been circularly shifted k = 2 positions, while [27, 29, 35, 42, 5, 9]
is a sorted array that has been shifted k = 4 positions.

Now, suppose you are given a sorted array that has been shifted an unknown number of times – we do not
know what k is.

Describe how you would implement an algorithm to find k in O (log(n)) time.

Solution:

First, notice that the smallest element in our array will tell us precisely how many times the array has been
shifted, since the smallest element should go in index 0. This is equivalent to looking for an element in
our array which is smaller than its neighbor to the left. Additionally, notice that given two elements on
the circular sorted array, the smallest element in the array (if it isn’t one of the selected elements) cannot
be to the right of the smaller element and left of the larger. Therefore, we know it must exist on the other
part of the array.

Algorithm:
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Begin by choosing an arbitrary element of the list - for the purpose of this example, we’ll pick the first
element. Then, if we did not find the smallest element (by checking the element to the left of it), we can
check the n

2 th element in the list. If that element is greater than the first element, then we know that the
smallest element must be in the second-half of the array. If that element is less than the first element,
then we know that the smallest element in the array must be in the first-half of the array. In any case,
we know that the half-array must still be a circular sorted array, since we only remove elements, which
cannot break the sortedness of an array.

Therefore, we can recurse on this half array, guaranteeing that the smallest element overall is on the half
array. When the array size is 1, we certainly must have found the smallest element.

(b) Suppose we have some Java method double foo(int n). This function is monotonically decreasing – this
means that as we keep plugging in larger and larger values of n, the foo(...) method will keep returning
smaller and smaller numbers.

More specifically, for any integer i, it is always true that foo(i) > foo(i + 1).

We want to find the smallest value of n that when plugged in will make foo(...) return a negative number.

Describe how you would implement a O (log(n)) algorithm to do this (where n is the final answer).

Solution:

Algorithm:

Check foo(2k), incrementing k until the output of the function is negative.

This gives us bounds on n, specifically that 2c−1 < n ≤ 2c for whichever c we end up on (which is also
approximately log(n)). Finally, we can perform a binary search over the elements between 2c−1 and 2c to
find the exact value of n.

Ultimately, we first do c checks to find the c, then do c− 1 more checks binary search over the 2c− 2c−1 =
2c−1 remaining elements on the range. This results in O(c) checks overall, which is on order of O(log(n))
as desired.

(c) Describe how you would modify merge sort so that it can sort a singly linked list in O (n log(n)) time. Your
algorithm should modify the linked list in place, without needed extra data structures.

Solution:

We first split the array by obtaining a pointer to the middle of the linked list, then splitting it in two.

We can find the middle in one of two ways. One way is to have the linked list always maintain its size and
loop size/2 times. The other way is to have two pointers. Both pointers begin at the start, but one moves
two spaces per iteration and the other moves only one. Once the “move-two-spaces” pointer reaches the
end of the linked list, we know the first pointer must be in the middle.

Either way, this takes O (n) time since we need to examine n
2 nodes. Once we have the middle pointer,

split (which takes O (1) time) and recurse.

We can then merge using nearly the identical algorithm we had for arrays in O (n) time.

We end up with the exact same recurrence as the original version of merge sort, which means the runtime
must be O (n log(n)).

(d) Describe how you would modify your answer from the previous question to randomly shuffle a linked list in
O (n log(n)) time. As before, your algorithm should modify the linked list in place, again without needing any
extra data structures.

Solution:
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Modify the merge step so that instead of moving the smallest item from the two linked lists to the combined
one, pick them at random.

So, instead of combining two sorted lists into a bigger sorted list, our merge(a, b) algorithm will instead
take two (randomized) lists and produce another randomized list.

6. Divide and conquer: challenge questions

(a) Design an algorithm that accepts an unsorted array of integers and finds the subarray with the maximum
possible sum.

For example, consider the array [2, -4, 1, 9, -6, 7, -3]. The maximum subarray would be [1, 9, -6,

7, -3], which sums to 11.

A naive solution that considers every possible subarray would take O
(
n2
)
time. Design a more efficient

algorithm that uses divide and conquer and runs in O (n log(n)) time.

Challenge: Can you design an algorithm that runs in O (n) time?

Solution:

For an explanation of how to solve this inO (n log(n)) time, see this webpage: https://www.geeksforgeeks.
org/divide-and-conquer-maximum-sum-subarray/

The basic intuition is that we split the array in half, recursive on both the left and the right, and find the
largest subarray that crosses over the middle. We then return the max of those three numbers.

The trick ends up being that if we insist that a subarray must cross over the middle, we can actually find
the largest possible subarray sum in O (n) time. So we end up doing 2T (n) + n work per each recursive
call.

For an explanation of how to solve this in O (n) time, see this webpage: https://www.geeksforgeeks.

org/largest-sum-contiguous-subarray/.

The basic intuition is start with a sum variable set to 0. We then loop over the array from the start and add
each element we encounter to sum.

If at any point, sum becomes negative, we know that particular sequence of values is irrecoverable. We’re
better off “abandoning” that particular subarray and starting over at that particular index.

(b) Given an array containing elements of type E design an algorithm that finds the majority element – that is,
an element that appears more then n/2 times. If no majority element exists, return null.

Your algorithm should run in O (n log(n)) time (and use only O (1) extra memory).

Note: the items in the array do NOT implement compareTo. This means you cannot sort the array!

Challenge: can you find the majority in O (n) time and O (1) extra memory?

Solution:

The O (n log(n)) solution works by first splitting the array into two halves. We recurse on both halves and
receive back the majority elements for the two halves (if they exists).

Once we finish recursing, there are four different scenarios:

(i) The two subarrays have the same majority element.

This means, by definition, that element must also be the majority of the full array.
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Why is this? Suppose that there are n elements in the overall array. If A is the majority of the left
half, then that means that by definition, there must be > n

4 occurrences of A on the left. Similarly, if
A is the majority on the right, there must be > n

4 occurrences there.

Therefore, there must be > n
2 occurrences of A overall. So we can just return A without needing to

check anything else.

(ii) The two subarrays have different majority elements.

In that case, we need to figure out which one is the true majority. We take the majority element from
the left and loop over the entire array to figure out how many times it appears. We do the same thing
with the majority element from the right. This will take O (2n) = O (n) time.

If either of them appear more then n
2 time, return that element as the majority. If neither of them

appear enough times, return null (or whatever else we’re using to indicate that there’s no majority).

(iii) Only one subarray has a majority; the other doesn’t.

We do the same sort of looping thing as before, again in O (n) time.

(iv) Neither subarrays have a majority.

We can automatically give up here, for basically the same reason why we could automatically return
in case 1.

We end up doing 2T (n) + n work in the worst case in the recursive case, which results in O (n log(n)).

The O (n) solution is called “Boyer-Moore majority vote algorithm.” The Wikipedia page has a good
overview of how the algorithmworks: https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_majority_
vote_algorithm

(c) Suppose we have two polynomials represented as two int arrays, where the i-th item represents the i-th
coefficient. So, the array [5, 10, 0, 2, -3] would represent the polynomial 5 + 10x+ 2x3 − 3x4.

Design an algorithm that accepts two of these arrays and returns a new one representing the product of the
two. You may assume both input arrays both have length n. A naive implementation using nested loops will
have O

(
n2
)
work; your algorithm must be asymptotically better.

Hint: Note that a polynomial A can be written as A0 +A1x
n/2, where A0 is the first n/2 terms and A1 is the

latter n/2 terms. This means that A ·B = (A0 +A1x
n/2) · (B0 +B1x

n/2). With some algebra, we can simplify
to obtain:

A ·B = A0B0 + ((A0 +A1)(B0 +B1)−A0B0 −A1B1)x
n/2 +A1B1x

n/2

This means that computing the product of A and B requires you to multiply polynomials exactly three times.
(Note: not 5 times – why?). You should exploit this property when implementing your algorithm.

Solution:

This algorithm is known as “Karatsuba multiplication” and is used to efficiently multiply large integers and
polynomials. You can find more detailed info about this algorithm (and faster variations!) online.

The core idea is that to compute our final equation, we actually only need to multiply together three
distinct polynomials:

• A0B0

• A1B1

• (A0 +A1)(B0 +B1)
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This means our runtime will end up forming the following recurrence:

T (n) =

{
1 if n = 1

3T (n/2) + n otherwise

That is, within a single recursive call, we multiply together three polynomials that are all half the size of the
input polynomial. We do an additional O (n) work per each recursive call to add and subtract everything
together.

The final algorithm looks roughly like so:

int[] multiplyPoly(int[] A, int[] B):

if A.length == 0 or B.length == 0:

return empty array

else if A.length == 1 and B.length == 1:

return [A[0] * B[0]]

else:

int n = A.length;

int mid = n / 2;

int[] A0, A1 = A.sublist(0, mid), A.sublist(mid, n)

int[] B0, B1 = B.sublist(0, mid), B.sublist(mid, n)

int[] X = multiplyPoly(A0, B0)

int[] Y = multiplyPoly(A1, B1)

int[] Z = multiplyPoly(add(A0, A1), add(B0, B1))

int[] out = new int[2 * n]

add X to out starting at 0

add Z - X - Y to out starting at mid

add Y to out starting at n

return out

(d) Suppose you are trying to write a video game containing thousands of different moving elements and want to
check if two elements have collided or overlapped.

A naive way of implementing this would be to use two nested loops and check every pair of elements. This
often ends up being too inefficient for most video games, even for only a few thousand elements (especially
games that require a high degree of responsiveness).

Describe how you would design a data structure to store these points in a way that lets you more efficiently
check whether two elements are colliding.

For the sake of simplicity, you may assume that each element is a circle and has a relatively small radius. You
may also assume that the elements are moving on a 2d plane – you don’t need to worry about collisions in 3d.

As a hint: think about recursively subdividing the 2d plane.

Solution:

We can solve this by creating a kind of a data structure known as a “quadtree” – in this case, probably
using a variation known as a “region quadtree”.

A “quadtree”, as its name suggests, is a kind of tree. Each branch node (in a region quadtree) represents
one rectangular region within the 2d plane. A branch node also has at most four children that contain all
elements located within the upper-left, upper-right, lower-left, and lower-right corners of that rectangle
respectively.
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Each child can either be another branch node (which contains four more children), or a leaf node (repre-
senting a single gameplay element).

Now, suppose we want to insert a new element into an existing quadtree. To do so, we run the following
algorithm:

(i) We assume the root node is a branch node. We take the coordinate of the point we want to add and
determine which of the four quadrants it belongs in.

(ii) This branch node could either be null, point to a leaf node, or point to another branch node.

(i) If it’s null, add a new leaf node for that coord there.

(ii) If it’s a leaf node, replace the leaf node with a branch node containing both the point that was
originally there, as well as the new one.

(iii) If it’s a branch node, recurse and repeat this entire procedure.

This ends up forming a tree, where the regions that contain a lot of points end up being deeply nested,
and the regions with few points end up being shallow.

This data structure also lets us search for all points within a certain bounding relatively efficiently: since
each branch node stores information about what region in the 2d plane its supposed to contain, we can re-
cursively search and find all leaf nodes that fall within those coordinates without having to search through
every single existing point.

Now, to check if a given point is colliding with any other one, we no longer need to compare it against
every single other point. Instead, we just find the leaf node corresponding to our point, move up a level
or two, and look at all of the children to get the list of all points that happen to be close by.

The core idea is we were able to speed up traversal by recursively dividing up our points into different
regions based on their x-y coordinates in the planes.

For more details, see this article: https://gamedevelopment.tutsplus.com/tutorials/quick-tip-use-

quadtrees-to-detect-likely-collisions-in-2d-space--gamedev-374

You may also want to try googling “quadtree visualization”.
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