
Graphs 
A graph, in the most basic sense, is a collection of vertices and edges.  Graphs can be 
thought of as an ADT if you think of them as the collection of operations like:  

● addEdge(Vertex source, Vertex dest)  
● isVertex(Vertex v)  
● getNeighbors(Vertex v)  
● findPath(Vertex source, Vertex dest)  
● findShortestCostPath(Vertex source, Vertex dest)  
● (and many, many others)  

 
However, it is usually more useful to think of graphs in a more general sense, since there are 
so many variations of different types of graphs.  In class we talked about all of the following 
terminology. 

Vertices and Edges 
Vertices (or nodes) are the entities in your data that may have relationships with each other. 
The edges are how those entities are related, usually representated as the ordered pair 
(vertexSource, vertexDestination).  For example, friends in a social network: the entities are 
the people in the network, the edges represent the friendship.  Those edges could be 
directed, undirected, weighted, unweighted.  The graph could have cycles, no cycles, be 
connected, fully connected, strongly/weakly connected, be dense or sparse, have self 
edges, etc.  A self edge (or self loop) is when a vertex ‘A’ has an edge to itself ‘(A, A)’.  The 
degree of a vertex (or in-degree and out-degree for directed graphs) is how many edges are 
connected to that vertex. 

Directed and Undirected Graphs  
This has to do with whether the edges have a direction to them.  If they have a direction, 
then the graph is directed.   Examples: 

 
Undirected Graph 

 
Directed Graph 

 
If you are traversing an undirected graph, you can go along an edge in either direction.  If 
you are traversing a directed graph, each edge has a source and a destination and you can 
only traverse along the edge in that direction.  In an undirected graph, the edge (a,b) implies 
that edge (b,a) is also in the graph, so you can traverse in either direction. 



Weighted and Unweighted Graphs 
This has to do with whether the edges have weights (or costs) to them.  You can use 
anything as a weight, though typically we think of weights as numeric costs.  We use weights 
when looking at paths.  For example, a graph representing locations might use distances as 
edge weights.  Then taking a path from Seattle -> Dallas -> Chicago will cost the sum of the 
edges along that path.  This is useful when comparing paths.  Example of a weighted graph: 
 

 

Connected, Fully Connected, Strongly/Weakly Connected 
The definition of connectedness is slightly different for directed vs undirected graphs.  For 
undirected graphs, it is considered connected if you can get from any vertex a to any other 
vertex b.  (i.e. the graph is all in one cluster, there are not disjoint sets of nodes in your 
graph). 

 
For directed graphs, we introduce the idea of strongly and weakly connected.  The definition 
of strongly connected is the same as the undirected graph’s definition of connection.  If you 
can get from every vertex a to every other vertex b, the graph is strongly connected.  The 
graph is weakly connected if, even if you can’t get from every vertex a to every other vertex 
b, you could if you ignored the direction of the edges.  (i.e. treat it like an undirected graph, if 
there are not disjoint sets of nodes, then it is weakly connected) 
 

 
Strongly Connected 

 
Weakly Connected 



 
For both directed and undirected graphs, they are considered fully connected if there is an 
edge from every vertex to every other vertex (i.e. there is a path of length 1 from every 
vertex a to every other vertex b). 

Paths and Cycles 
A path is a set of edges from a vertex ‘A’ to another vertex ‘B’ in the graph.  A cycle is a path 
that starts and ends at the same vertex.  Optionally, a cycle can go through that vertex 
multiple times.  If it doesn’t repeat vertices, then a cycle is a simple cycle.  If it is a weighted 
graph, the cost of a path or a cycle is the sum of the costs for each of the edges.  Whether it 
is weighted or not, the length of a path or cycle is the number of edges.  Example: 

 
Paths and cycles in directed graphs are exactly the same, except you can only use an edge 
in the direction it points (from source to destination). 

DAG:  Directed Acyclic Graphs 
A DAG is a graph that is both directed and has no cycles.  The edges can be weighted or 
unweighted.  All trees are DAGs.  DAGs are the only types of graphs you can do Topological 
Sorts on.  

Density and Sparsity 
Density and sparsity are terms used (in any kind of graph) to discuss how many edges are in 
a graph.  A dense graph has lots of edges and a sparse graph has few edges. 
As described in the lecture slides: 
In an undirected graph, 0 ≤ |E| < |V|2        In a directed graph: 0 ≤ |E| ≤ |V|2 

Therefore, for any graph: O(|E|+|V|2) is still O(|V|2) 
 
However, because |E| is often much smaller than |V|2, we do not always approximate |E| as 
O(|V|2).  It is useful to be able to describe an algorithm as O(|E|), since that means 
something more specific than O(|V|). 
 
This definition is also useful, because if |E| is O(|V|2) we say the graph is dense and if |E| is 
O(|V|) we say the graph is sparse. 



Implementing a Graph 
We still need to talk about how to actually implement a graph.  So far, we’ve discussed 
graphs in a general sense, but we need to actually implement how to store a graph so we 
can implement functions like isEdge(Vertex source, Vertex dest).   The 
efficiency analysis of various operations on the various representations are in the lecture 
slides. 

Adjacency Matrix 

For each vertex in the graph, we can assign an index.  Then we can use a matrix, or a 2D 
array to represent where edges exist in our graph.  Here is an example where the graph is 
directed and the edges have no weights.  We can use booleans, true or false, to represent 
that an edge between those two vertices exist.  This is better for dense graphs. 

          
We could use numbers instead of booleans if the edges have weights.  Or we can minimize 
the amount of space in our 2D array if the graph is undirected, because we can use edge 
(a,b) to represent the implied edge (b,a).  

Adjacency List 

For each vertex in the graph, we can store the collection of edges from that vertex.   There 
are many variations on how to actually implement this.  Commonly, you will use a 
Map<Vertex, Collection<Edge>> where you are mapping a vertex to the edges it stores. 
That ‘edge’ could be a vertex by itself like below, or an edge object which stores the cost. 
The collection of edges in the map could be a Set, a List, an Array, or any other collection. If 
it’s a directed graph, we can store both a collection of in-edges and a collection of out-edges. 
Adjacency Lists are a more common implementation because they are very flexible and are 
better for sparse graphs, which more closely models many real world problems. 

            


