CSE 373: Data Structures & Algorithms
Union-Find Continued

Riley Porter
Winter 2017

CSE373: Data Structures & Algorithms

17

Course Logistics

HW regrades will be handled by grading head TA Chloe
Lathe. Regrade catalyst form up on the website in 3

places.

AVL Tree topic summary out

HW3 still out. Don’t forget about TA office hours and
the catalyst board if you get stuck.

Midterm a week from today :0 :0 :0O
— Help come up with a cheat sheet

Review: Union Find Operations

Given an unchanging set S, create an initial partition of a set
— Typically each item in its own subset: {a}, {b}, {c}, ...
— Give each subset a "name" by choosing a representative element

Operation £ind takes an element of S and returns the
representative element of the subset it is in

Operation union takes two subsets and (permanently) makes
one larger subset

— A different partition with one fewer set
— Affects result of subsequent £ind operations
— Choice of representative element up to implementation

CSE373: Data Structures &

9 Algorithms

Example application: maze-building

* Build a random maze by erasing edges

Criteria:
— Possible to get from anywhere to anywhere

— No loops possible without backtracking
* After a "bad turn" have to "undo"

Maze building

Pick start edge and end edge

Start

End

Repeatedly pick random edges to
delete

One approach: just keep deleting random edges
until you can get from start to finish

Start

End

Problems with this approach

1. How can you tell when there is a path from start to
finish?
— We do not really have an algorithm yet (Graphs)

2. We have cycles, which a "good" maze avoids

3. We can’t get from anywhere to anywhere else

Start

CSE373: Data Structures &
~—~————— End

Algorithms

Revised approach

* Consider edges in random order
* But only delete them if they introduce no cycles (how? TBD)

* When done, will have one way to get from any place to any
other place (assuming no backtracking)

Start

End

* Notice the funny-looking tree in red

CSE373: Data Structures &

24 Algorithms

Cells and edges

e Let’s number each cell
— 36totalfor6x6

* An (internal) edge (x,y) is the line between cells x and y
— 60 total for 6x6: (1,2), (2,3), ..., (1,7), (2,8), ...

Start 1 | 2| 3|4 | 5|6

718|910 11|12
13114 15|16 |17 | 18
191201212223 |24
2526|2728 |29 |30
3113233343536 End

The trick

e Partition the cells into disjoint sets: "are they connected"
— Initially every cell is in its own subset
e If an edge would connect two different subsets:

— then remove the edge and union the subsets
— else leave the edge because removing it makes a cycle

Start 1|2]3] 4|56 Start1 2|3]|4)5]|6
=181 9 110111112 7 8 910|111 |12
1311411511617 | 18 13 14|15 16|17 | 18
19 20|21 |22 23 24 19|20 21|22 23|24
25| 26 [27| 28 | 29 | 30 25|26 27 (28|29 30
31/32(33/34(35/36 Eng |31/32 33 34 35 36 End

Pseudocode of the algorithm

Partition = disjoint sets of connected cells, initially each cell in its own 1-
element set

Edges = set of edges not yet processed, initially all (internal) edges
* Maze = set of edges kept in maze (initially empty)

while Partition has more than one set {

pick a random edge (cell 1,cell 2) to remove from
Edges

set 1 = find(cell 1)
set 2 = find(cell 2)
1f set 1 == set 2:

add (cell 1, cell 2) to Maze
else:

union (set 1, set 2)

}
Add remaining members of Edges to Maze, then output Maze

CSE373: Data Structures &
27 .
Algorithms

pick random Edge step(27891319

{3}
Pick (8,14) {4}
{5}
{6}
{10}
Start 1 2 13|14 |5|6 {(11,17)
7 8 9101112 112}
{14,20,26,27}
1314 |15 16 |17 | 18 {15,16,21}
{18}
19 (20 |21 |22 23|24 125)
25 (26 27 (28|29 30 {28}
— {31}
31132 33 34 35 36 End {22,23,24,29,30,32
33,34,35,36}

(U)

CSE373: Data Structures &
Algorithms

28

Example pick random Edge step

ﬁ:artition:
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}

{31}
{22,23,24,29,30,32

33,34,35,36)
U 4

Chosen
Edge: (8, 14)

Find(8) = 7
Find(14) = 20

Union(7,20)

D

Since we
unioned the
two sets, we
“deleted”

the edge and
don’t add the
edge to our

Maze
CSE373: Data Structure

{3}

{4}

{5}

{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}

{31}
{22,23,24,29,30,32

k?»s,%ss,%}

ﬁartition: \
{1,2,7,8,9,13,19,14,20,26,27}

4

s & Algorithms

29

Add edge to Maze ste

Pick (19,20)

Start 1

.
13
19

25

2
8
14
20
26

3

4 1 5|6

9

10| 11 [12

15
21

16 | 17 | 18

22 23|24

27

28 |29 30

31

32

33

34 35 36 End

Since we didn’t union the sets together,
we don’t want to delete this edge (it
would introduce a cycle). We add the
edge (19,20) to our Maze.

P
(artition: \

{1,2,7,8,9,13,19,14,20,26,27}

{3}

4}

1o}

{6}

110}
(1,17}
112}
{15,16,21}
18}

125}

128}

31}
{22,23,24,29,30,32

\33,%35,36} /

At the end

e Stop when Partition has one set

* Suppose green edges are already in Maze and black edges
were not yet picked
(")
— Add all black edges to Maze S
{1,2,3,4,5,6,7,... 36}

U)

Stat1 2 3|4 5 6
7 8 9 10 11|12
13[14]15 16 1718
192021 22 23|24
25 26 27 28|29 30
31|32 33 34 35 36 Eng

CSE373: Data Structures &

31 Algorithms

Applications / Thoughts on Union-Find

Maze-building is cute © and a surprising use of the union-find ADT

Many other uses:
— Road/network/graph connectivity (will see this again)
* "connected components" e.g., in social network
— Partition an image by connected-pixels-of-similar-color

— Type inference in programming languages

Our friend group example could be done with Graphs (we’ll learn
about them later) but we can use Union-Find for a much less
storage intense implementation. Cool! ©

Union-Find is not as common as dictionaries, queues, and stacks,
but valuable because implementations are very fast, so when
applicable can provide big improvements

Implementation?

How do you store a subset?

How do you know what the “representative”
IS?

How do you implement union?
How do you pick a new “representative”?
What is the cost of find? Of union? Of create?

Implementation

Start with an initial partition of n subsets
— Often 1-element sets, e.g., {1}, {2}, {3}, ..., {n}

May have m £ind operations and up to n-1 union
operations in any order

— After n-1 union operations, every £ind returns same 1 set

If total for all these operations is O(m+n), then amortized
O(1)
— We will get very, very close to this

— O(1) worst-case is impossible for £ind and union
* Trivial for one or the other

How should we “draw” this data
structure?

* Saw with heaps that a more intuitive depiction
of the data structure can help us better
conceptualize the operations.

 We can still implement the code in different
ways, just like heaps can be implemented with
an array even though we think of them as a
tree structure.

Up-tree data structure

 Tree with any number of children at each node

— References from children to parent (each child knows who it’s parent
is)

e Start with forest (collection of trees) of 1-node trees

O @ 6 w66 © @

 Possible forest after several unions:
— Will use overall roots for the

representative element / \

CSE373: Data Structures &

36 Algorithms

Find

find(x): (backwards from the tree traversals
we’ve been doing for find so far)

— Assume we have O(1) access to each node
— Start at x and follow parent pointers to root
— Return the root

1 3 7
find(6) =7

Union

union(x,y):
— Find the roots of x and y
— if distinct trees, we merge, if the same tree, do nothing

— Change root of one to have parent be the root of the
other

L
union(1,7) 1) 3) \®

CSE373: Data Structures &
38 ;
6 Algorithms

Okay, how can we represent it
internally?

* Important to remember from the operations:
— We assume O(1) access to each node

— |deally, we want the traversal from leaf to root of
each tree to be as short as possible (the find
operation depends on this traversal)

— We don’t want to copy a bunch of nodes to a new
tree on each union, we only want to modify one
pointer (or a small constant number of them)

Simple implementation

If set elements are contiguous numbers (e.g., 1,2,...,n), use
an array of length n called up

— Starting at index 1 on slides

— Put in array index of parent, with 0 (or -1, etc.) for a root

Example:
1 2 3 4 5 6 7

@@ @G © @ wlololololo]o]o

e up |0 |1]0|7 |7

&)
)

®é@ : .

If set elements are not contiguous numbers, could have a separate
dictionary hash map to map elements (keys) to numbers (values)

CSE373: Data Structures & Algorithms 40

Implement operations

// assumes x in range 1l,n
int find(int x) {
while (up[x] '= 0) {
X = up[x];
}

return X;

// assumes x,y are roots
void union(int x, int V)

gy

uply] = x;
}

e Worst-case run-time for union??

e Worst-case run-time for £ind?

e Worst-case run-time for m £inds and n-1

unions?

CSE373: Data Structures &
Algorithms

Implement operations

// assumes x in range 1l,n
int find(int x) {
while (up[x] '= 0) {
x = up[x];

}

return X;

// assumes x,y are roots
void union(int x, int vy){

uply] = x;
}

 Worst-case run-time for union? 0(1) (with our assumption...)

e Worst-case run-time for £ind?

O(n)

e Worst-case run-time for m £inds and n-1 0(m*n)

unions?

42

CSE373: Data Structures &
Algorithms

Two key optimizations

1. Improve union so it stays O(1) but makes
find O(logn)
— like how we made find faster from BSTs to AVL
trees, by doing a little extra work on each insert

2. Improve £ind so it becomes even faster

— path compression: can we get from leaf to root in
1 hop?

The bad case to avoid

@ @ @ @ union(2,1)
@ @ @ union(3,2)

/@’) o @ unio.n(n,n-'l)

©)
Q{ A0 find(1) nsteps!!

/@

@

of

CSE373: Data Structures &

44

Algorithms

Weighted union

Weighted union:

— Always point the smaller (total # of nodes) tree to
the root of the larger tree

2 1 @ 4 ﬂ
(5) (4
(6

union(1,7)

CSE373: Data Structures &

4 Algorithms

Weighted union

Weighted union:

— Always point the smaller (total # of nodes) tree to
the root of the larger tree

— What just happened to the height of the larger
tree?

union(1,7)

CSE373: Data Structures &
Algorithms

Weighted union

Weighted union:

— Like balancing on an AVL tree, we’re trying to
keep the traversal from leaf to overall root short

e

union(1,7)

CSE373: Data Structures & Algorithms 47

Array implementation

Keep the weight (humber of nodes in a second array). Or
have one array of objects with two fields. Could keep track of

height, but that’s harder. Weight gives us an approximation.

1 1 2 345 6 7
parent |0]1]/0|7]7]5]0

weight | 2 1 4

1 2 3 456 7

1 parent| 7 |1|/0]7{7]5|0
weight 1 6

CSE373: Data Structures &
Algorithms

Nifty trick

Actually we do not need a second array...

— Instead of storing O for a root, store negation of
weight. So parent value < 0 means a root.

1 2 345 6 7

parent 2111 7715/|-4
or weight

== 1N

4 56 7
[]17]5]|-6

1
parent |/
or weight

CSE373: Data Structures &
Algorithms

Intuition: The key idea

Intuition behind the proof: No one child can have more than
half the nodes
T

Aj

So, as usual, if number of nodes is exponential in height,

then height is logarithmic in number of nodes. The height is
log(N) where N is the number of nodes.

— > A

So £ind is O(logn)

The new worst case find

After n/2 + n/4 + ...+ 1 Weighted Unions:

BB T

Height grows by 1 a total of 1og n times find

CSE373: Data Structures &

o1 Algorithms

Path compression

e Simple idea: As part of a £ind, change each
encountered node’s parent to point directly to
root

— Faster future £inds for everything on the path (and
thelr descendants)

g) é\. — mea@ é)

52 CSE373: Data Structures &

1 2 Algorithms

Pseudocode

// performs path compression
find (element)
// find root
root = element
while parent[root] > 0 // not overall root yet
root = parent[root]

1f element == root
// element already the top of a tree
return root
else // let’s compress the path
old parent = parent|[element]
while (old parent != root)
parent [element] = root
element = old parent
old parent = parent|[element]
return root

CSE373: Data Structures &

>3 Algorithms

So, how fast is it?

A single worst-case £ind could be O(1og n)

— But only if we did a lot of worst-case unions
beforehand

— And path compression will make future finds faster

Turns out the amortized worst-case bound is much
better than O(1og n)
— We won’t prove it — see text if curious
— Intuition:
 How it is almost O(1)
 total for m £inds and n-1 unions is almost O(m+n)

Today’s Takeaways

* How to implement the Union-Find ADT and
the create, union, and find operations

* The optimizations that can help make it faster

* The intuitions on runtime analysis for the
different operations and why the
optimizations help make it faster

