CSE 373: Data Structures & Algorithms
Software Interlude -- Testing and JUnit

Riley Porter
Winter 2017

based on work from Michael Ernst, Hal Perkins, Dan Grossman, and Zack Tatlock

CSE373: Data Structures & Algorithms

Course Logistics

* HW5 out = more graphs!

* Nearing the end! The last main course topic
Is next week: sorting. HW6 out next
Wednesday and due March 10t

Software Quality (QA or QE)

It’s a CS research area and can be a full time job! Some activities include:
e Static analysis (assessing code without executing it)

e Correctness proofs (theorems about program properties)

 Code reviews (people reading each others’ code)

» Software process (methodology for code development)

* Testing (of course)

Testing is NOT just debugging!

We'll cover lots of testing principles and strategies:
— Heuristics for good test suites
— Black-box testing
— Clear-box testing and coverage metrics
— Regression testing
— Integration/System tests
— Test Driven Development

Kinds of Testing

Testing is so important the field has terminology for different kinds of tests
— Won’t discuss all the kinds and terms

Here are three different dimensions:

— Unit testing versus system/integration testing
* One module’s functionality versus pieces fitting together

— Black-box testing versus clear-box testing
* Does implementation influence test creation?
* “Do you look at the code when choosing test data?”

— Specification testing versus implementation testing

* Test only behavior guaranteed by specification or other behavior
expected for the implementation?

CSE373: Data Structures &
Algorithms

Unit Testing

A unit test focuses on one method, class, interface, or
module

Test a single unit in isolation from all others

Typically done earlier in software life-cycle

— Integrate (and test the integration) after successful unit
testing

Common Java unit testing framework: JUnit

Square Root Example

// throws: IllegalArgumentException if x<0
// returns: approximation to square root of x
public double (double =x) {..}

What are some values or ranges of x that might be worth probing?
x < 0 (exception thrown)
x 2 0 (returns normally)
around x = 0 (boundary condition)
perfect squares (sqrt(x) an integer), non-perfect squares
x<sgrt(x) and x>sqrt(x) — that's x<1 and x>1 (and x=1)
Specific tests: say x=-1,0, 0.5, 1, 4

CSE373: Data Structures &
Algorithms

General Approach: Partition the Input Space

(1) Identify sets of input where all the
members have the same behavior.
(2) Try one input from each set.

Two problems with execution:

1. Notion of same behavior is subtle
* Naive approach: execution equivalence
e Better approach: revealing subdomains

2. Discovering the sets requires perfect domain knowledge

* |f we had it, we wouldn’t need to test
* Use heuristics to approximate cheaply

CSE373: Data Structures &
Algorithms

Test Suite Example #1

// returns: x < 0 = returns -x
// otherwise = returns x
int abs(int x):
if (x < 0):
return -x;
else:

return x;

All x < 0 are execution equivalent
— Program takes same sequence of steps for any x< 0

All x > 0 are execution equivalent

So {-3, 3} is probably a good test suite (one element from each subset)

CSE373: Data Structures &
Algorithms

Test Suite Example #2

// returns: x < 0 = returns -x
// otherwise = returns x

int abs(int x):
if (x < -2):
return -x;
else:

return x;

For this (buggy) implementation of the method, three possible outcomes:
— X < -2 PASS
— x=-2o0rx=-1FAIL
— x>0 PASS

{-3, 3} as a test suite does not reveal the error!

CSE373: Data Structures &
Algorithms

Determining Actual Subsets

A subdomain is a subset of possible inputs

A subdomain is revealing for error E if either:
— Every input in that subdomain triggers error E, or
— No input in that subdomain triggers error E

Need test only one input from a given subdomain

— If subdomains cover the entire input space, we are guaranteed to
detect the error if it is present

The trick is to guess these revealing subdomains

CSE373: Data Structures &

10 Algorithms

Heuristic: Boundary Testing

Why?
— Off-by-one bugs
— “Empty” cases (0 elements,
null, ...)

— Overflow errors in arithmetic

— Object aliasing

Small subdomains at the edges of the “main” subdomains have a high
probability of revealing many common errors

— Also, you might have misdrawn the boundaries

CSE373: Data Structures &
Algorithms

11

Boundary Testing

To define the boundary, need a notion of adjacent inputs

One approach:
— |dentify basic operations on input points
— Two points are adjacent if one basic operation apart

Point is on a boundary if either:

— There exists an adjacent point in a different subdomain
— Some basic operation cannot be applied to the point

Example: list of integers
— Basic operations: create, append, remove
— Adjacent points: <[2,3],[2,3,3]>, <[2,3],[2]>
— Boundary point: [] (can’t apply remove)

Some Boundary Cases

Arithmetic
— Smallest/largest values (edge case and overflow)
— Zero

Objects
— null
— Circular list
— Same object passed as multiple arguments (aliasing)

CSE373: Data Structures &

13 Algorithms

Boundary: Arithmetic Overflow

// returns: |x|
public int (int =) {..}

What are some values or ranges of x that might be worth probing?
— x <0 (flips sign) or x = 0 (returns unchanged)
— Around x =0 (boundary condition)
— Specific tests: say x=-1, 0, 1

How about...

int x = Integer.MIN VALUE; // x=-2147483648
System.out.println (x<0) ; // true
System.out.println(Math.abs (x)<0); // also true!

From Javadoc for Math . abs:

Note that if the argument is equal to the value of

Integer.MIN VALUE, the most negative representable int value, the
result is that same value, which is negative

CSE373: Data Structures &

4 Algorithms

Boundary: Duplicates and Aliases

// modifies: src, dest

// effects: removes all elements of src and
// appends them in reverse order to
// the end of dest

<E> void appendList (List<E> src, List<E> dest) {
while (src.size()>0) {
E elt = src.remove(src.size()-1);
dest.add (elt) ;

}
}

What happens if src and dest refer to the same object?
— This is
— It’s easy to forget!
— Watch out for shared references in inputs

CSE373: Data Structures &

15 Algorithms

Black-Box Testing

Heuristic: Explore alternate cases in the specification, plus potentially some
boundary conditions around those cases

Procedure is a black box: interface visible, internals hidden

Example
// returns: a > b = returns a
// a < b = returns b
// a =b = returns a
int max(int a, int

o
-
—_—
e

3 cases the client knows about leads to 3 tests:
(4,3) = 4 (i.e. any inputin the subdomain a > b)
(3,4) = 4 (i.e. any inputin the subdomain a < b)
(3,3) = 3 (i.e. any inputin the subdomain a = b)

CSE373: Data Structures &

16 Algorithms

Black-Box Testing: Advantages

— Assumptions embodied in code not propagated to test data
— (Avoids “group-think” of making the same mistake)

— Test data need not be changed when code is changed

— Testers need not be familiar with code
— Tests can be developed before the code

CSE373: Data Structures &

v Algorithms

Clear (or white or class) Box Testing

Heuristic: Test the actual implementation (look at the code)

Focus: features not described by specification
— Control-flow details
— Performance optimizations

— Alternate algorithms for different cases

Common goal:

— Ensure test suite covers (executes) all of the program
— Measure quality of test suite with %

Assumption implicit in goal:
— If high coverage, then most mistakes discovered

CSE373: Data Structures &
18 .
Algorithms

Clear-Box Testing: Motivation

What are some subdomains that black-box testing won't catch:

boolean[] primeTable = new boolean[CACHE SIZE];

boolean isPrime (int x) {
if (x > CACHE SIZE) ({
for (int i = 2; i < x / 2; i++) {
if (x % 1 == 0)
return false;
}
return true;

} else {
return primeTable[x];

}

Clear-Box Testing

* Finds an important class of boundaries -- ones not necessarily easy to
guess given the specification

— Yields useful test cases

* Consider CACHE SIZE in isPrime example
— Important tests CACHE SIZE-1, CACHE SIZE, CACHE SIZE+1l

— If CACHE SIZE is mutable, may need to test with different
CACHE SIZE values

Disadvantage:
— Tests may have same bugs as implementation
— Buggy code tricks you into complacency once you look at it

CSE373: Data Structures &

20 Algorithms

Code Coverage Example #1

What is enough testing? What cases? Does this code have a bug?

int min(int a, int b) {

int r = a; // should be r = b
if (a <= b) {

r = a;
}

return r;

Consider any test witha<b (e.g.,, min(1,2))
— Executes every instruction
— Misses the bug

is not enough

CSE373: Data Structures &
21 ;
Algorithms

Code Coverage Example #2

What is enough testing? What cases? Does this code have a bug?

int num pos(int[] a) {

int ans = 0;
for (int x : a) {
if (x > 0)

ans = 1; // should be ans += 1
}

return ans;

* Consider two-test suite: {0,0} and {1}. Misses the bug.
e Or consider one-test suite: {0,1,0}. Misses the bug.

is not enough
— Here, path coverage is enough, but no bound on path-count

CSE373: Data Structures &
22 ;
Algorithms

Varieties of Coverage

Various coverage metrics (there are more):

Statement coverage iIncreasing
Branch coverage number of
Loop coverage test C_:asaes
- . . require
Condition/Decision coverage d
(generally)
Path coverage

Limitations of coverage:

1. 100% coverage is not always a reasonable target
100% may be unattainable (dead code)
to approach the limit

2. Coverageis
We really want the revealing subdomains

CSE373: Data Structures &

23 Algorithms

Regression Testing

Whenever you find a bug
— Store the input that elicited that bug, plus the correct output
— Add these to the test suite
— Verify that the test suite fails
— Fix the bug
— Verify the fix

Ensures that your fix solves the problem
— Don’t add a test that succeeded to begin with!
Helps to populate test suite with good tests
Protects against reversions that reintroduce bug
— It happened at least once, and it might happen again

CSE373: Data Structures &

24 Algorithms

System or Integration Testing

Tests of whether the system as a whole works — whether the

(individually correct, unit-tested) modules fit together to
achieve correct functionality

* All of the previous topics (black-box, clear-box, regression
testing, determining test cases) still apply

* End-to-End tests will test your system from the users
(front end) to the persistent data storage (back end)

e Usually involves more complicated operations than unit
tests

General Rules of Testing

First rule of testing: Do it early and do it often
— Best to catch bugs soon, before they have a chance to hide

— Automate the process if you can
— Regression testing will save time

Second rule of testing: Be systematic
— If you randomly thrash, bugs will hide in the corner until later
— Writing tests is a good way to understand the spec
— Think about revealing domains and boundary cases
* If the spec is confusing, write more tests
— Spec can be buggy too
* Incorrect, incomplete, ambiguous, missing corner cases
— When you find a bug, write a test for it first and then fix it

CSE373: Data Structures &

26 Algorithms

Hints on Testing

Write small tests
Choose good names for your tests:
— use the proper instance of the assert method
— write good messages
Think carefully whether alternative solutions should be correct
— (e.g., is there more than one shortest path for the given graph?).
Write targeted tests
— not an arbitrary number of random examples
Keep your unit tests de-coupled
— don’t have one test case test multiple things

— don’t rely on certain state in the middle of the test that is not related to
the test case

Test Driven Development

Write your tests before starting to write any code.

First:

use the specification to identify the abstract-value domain of each non-
trivial public method

* what is the set of objects that the method can be called on, and
the set of allowed inputs?

Then:

when you actually implement the code, you’ll have thought about these
cases, cleared up any confusion with the specification, and you are less
likely to make mistakes.

JUnit: Testing Framework

 Alavalibrary for unit testing, comes included with Eclipse
— OR can be downloaded for free from the JUnit web site at http://junit.org

— JUnit is distributed as a "JAR" which is a compressed archive containing
Java .class files

import org.junit.Test;
import static org.junit.Assert.¥*;

public class name {

@Test
public void name() { // a test case method

}
}

A method with @Test is flagged as a JUnit test case and run

CSE373: Data Structures &

29 Algorithms

JUnit Asserts and Exceptions

A test will pass if the assert statements all pass and if no exception
thrown. Examples of assert statements:

— assertTrue(message, value)

— assertFalse(message, value)

— assertEquals(message, expected, actual)

— assertNull (message, value)

— assertNotNull (message, value)

— fail (message)

Tests can expect exceptions or timeouts
@Test (expected = ExceptionType.class)
public void name() {

CSE373: Data Structures &

30 Algorithms

Today’s Takeaways

* Understand some basic testing principles

and strategies

— Unit testing

— Heuristics for good test suites

— Black-box testing

— Clear-box testing and coverage metrics
— Regression testing

— Integration/System tests

— Test Driven Development

e Understand how to write some basic JUnit

