CSE 373: Data Structure & Algorithms

Comparison Sorting

Riley Porter
Winter 2017

CSE373: Data Structures & Algorithms

Course Logistics

HW4 preliminary scripts out
HWS5 out = more graphs!
Last main course topic this week: Sorting!

Final exam in 2 weeks!

Introduction to Sorting

 Why study sorting?

— |t uses information theory and is good algorithm
practice!

* Different sorting algorithms have different
trade-offs
— No single “best” sort for all scenarios
— Knowing one way to sort just isn’t enough

* Not usually asked about on tech interviews...

— but if it comes up, you look bad if you can’t talk
about it

More Reasons to Sort

General technique in computing:
Preprocess data to make subsequent operations faster

Example: Sort the data so that you can
— Find the k" largest in constant time for any k
— Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters
depends on

— How often the data will change (and how much it will change)
— How much data there is

Definition: Comparison Sort

A computational problem with the following
input and output

Input:
An array A of length n comparable elements

Output:
The same array A, containing the same

elements where:

foranyiand jwhere0O< i < §J < n
thenA[i] = A[J]

More Definitions

In-Place Sort:
A sorting algorithm is in-place if it requires only O(1) extra
space to sort the array.
— Usually modifies input array
— Can be useful: lets us minimize memory

Stable Sort:

A sorting algorithm is stable if any equal items remain in the same
relative order before and after the sort.

— Items that ‘compare’ the same might not be exact duplicates
— Might want to sort on some, but not all attributes of an item
— Can be useful to sort on one attribute first, then another one

Stable Sort Example

Input:
[(8, "fox"), (9, "dog"), (4, "wolf"), (8, "cow")]

Compare function: compare pairs by number only

Output (stable sort):
[(4, "wolf"), (8, "fox"), (8, "cow"), (9, "dog")]

Output (unstable sort):
[(4l "WOlf")l (81 "COW")I (8I ”fOX”)I (9I "dog")]

CSE373: Data Structures &
Algorithms

Lots of algorithms for sorting...

Quicksort, Merge sort, In-place merge sort, Heap sort, Insertion sort, Intro sort, Selection sort,
Timsort, Cubesort, Shell sort, Bubble sort, Binary tree sort, Cycle sort, Library sort, Patience
sorting, Smoothsort, Strand sort, Tournament sort, Cocktail sort, Comb sort, Gnome sort, Block
sort, Stackoverflow sort, Odd-even sort, Pigeonhole sort, Bucket sort, Counting sort, Radix sort,
Spreadsort, Burstsort, Flashsort, Postman sort, Bead sort, Simple pancake sort, Spaghetti sort,
Sorting network, Bitonic sort, Bogosort, Stooge sort, Insertion sort, Slow sort, Rainbow sort...

DEFINE FRSTBOGOSORT(LIST):
// AN OPTMZED BOGOSORT
// RONS N O(N LoGN)
FOR N FROM 1. TO LOG(LENGTH(LiST)):
SHUFFLE (LST):
IF 1ISSORTED (LIST):
REURN LST
REURN “KERNEL PAGE FRULT (ERROR (PDE: 2)"

CSE373: Data Structures &
Algorithms

Sorting: The Big Picture

Simple Fancier Comparison
algorithms: algorithms: lower bound:
O(n?) O(n log n) Q(n log n)
Insertion sort Heap sort
Selection sort Merge sort

Quick sort (avg)

Specialized
algorithms:
O(n)

|

Bucket sort
Radix sort

Handling
huge data
sets

Insertion Sort

current item

insert where it belongs in
sorted section 2

already sorted unsorted

already sorted unsorted

shift other elements over and already
sorted section is now larger

2 |3 4 5 8 7T 1

I J \

=

T Y
already sorted unsorted

_ 4
new current item

r‘ﬁ
2 3 4 5 . 7 | 6
i J 1 i
T I

already sorted unsorted

CSE373: Data Structures &
Algorithms

Insertion Sort

Idea: At step k, put the kt" element in the correct position among
the first k elements

for (int i = 0; i < n; i++) {
int newIndex = findPlace(i);

shift (newIndex, 1i);

Loop invariant: when loop index is i, first i elements are sorted

Runtime?
Best-case Worst-case Average-case

Stable? In-place?

Insertion Sort

Idea: At step k, put the kt" element in the correct position among
the first k elements

for (int i = 0; i < n; i++) {
int newIndex = findPlace(i);

shift(newIndex, 1i);

Loop invariant: when loop index is i, first i elements are sorted

Runtime?
Best-case O(n) Worst-case O(n?) Average-case O(n?)
start sorted start reverse sorted (see text)

Stable? Depends on implementation. Usually. In-place? Yes

CSE373: Data Structures &

2 Algorithms

Selection Sort

swap

1 N

currentindex next smallest currentindex pext smallest

=

I] | 0
i T

already sorted unsorted already sorted unsorted

3 4
next index next smallest

now ‘already sorted’ section is one larger

123.8675

\ J \ J
! 7

already sorted unsorted already sorted unsorted

CSE373: Data Structures &

= Algorithms

Selection Sort

Idea: At step k, find the smallest element among the not-yet-sorted
elements and put it at position k

for (int i = 0; i < n; i++) {
int newIndex = findNextMin(1i);

swap (newIndex, 1i);

}

Loop invariant: when loop index is i, first 1 elements are sorted

Runtime?
Best-case Worst-case Average-case

Stable? In-place?

Selection Sort

Idea: At step k, find the smallest element among the not-yet-sorted
elements and put it at position k

for (int i = 0; i < n; i++) {
int newIndex = findNextMin(1i);

swap (newIndex, 1i);

}

Loop invariant: when loop index is i, first 1 elements are sorted

Runtime?
Best-case, Worst-case, and Average-case O(n?)

Stable? Depends onimplementation. Usually. In-place? Yes

CSE373: Data Structures &

= Algorithms

Insertion Sort vs. Selection Sort

* Have the same worst-case and dverage-case
asymptotic complexity
— Insertion-sort has better best-case complexity;
preferable when input is “mostly sorted”

e Useful for small arrays or for mostly sorted
iInput

Bubble Sort

e for niterations: ‘bubble’ next largest element to the
end of the unsorted section, by doing a series of swaps

* Not intuitive — It’s unlikely that you’d come up with
bubble sort
* Not good asymptotic complexity: O(n?)

* It's not particularly efficient with respect to common
factors

Basically, almost never is better than insertion or
selection sort.

Sorting: The Big Picture

Simple Fancier Comparison
algorithms: algorithms: lower bound:
O(n?) O(n log n) Q(n log n)
Insertion sort Heap sort
Selection sort Merge sort

Quick sort (avg)

Specialized
algorithms:
O(n)

|

Bucket sort
Radix sort

Handling
huge data
sets

Heap Sort

* ldea: buildHeap then calldeleteMin ntimes

E[] input = buildHeap(...);
E[] output = new E[n];

for (int i = 0; i < n; i++) {
output[i] = deleteMin(input);
}
* Runtime?
Best-case = Worst-case Average-case
e Stable?

* |n-place?

Heap Sort

* ldea: buildHeap then calldeleteMin ntimes

E[] input = buildHeap(...);

E[] output = new E[n];

for (int i = 0; i < n; i++) {
output[i] = deleteMin(input);

}

e Runtime?

Best-case, Worst-case, and Average-case: O(n log(n))
e Stable? No

* In-place? No. But it could be, with a slight trick...

CSE373: Data Structures &
20 .
Algorithms

But this reverse sorts —

In-place Heap Sort nowwould youfixthat:

— Treat the initial array as a heap (via buildHeap)

— When you delete the it element, put it at arr[n-i]
* That array location isn’t needed for the heap anymore!

s [7TsTofsfefaols] 2]

\ J\ J
I I

l heap part A sorted part

put the min at the end of the heap data

> [sIzTelolslm0l« 5] 2]

\] \]

arr[n-i]= Y Y
deleteMin () heap part sorted part

CSE373: Data Structures &
Algorithms

21

“AVL sort”? “Hash sort”?

AVL Tree: sure, we can also use an AVL tree to:
— insert each element: total time O(n 1og n)

— Repeatedly deleteMin: total time O(n 1og n)
* Better: in-order traversal O(n), but still O(n Log n) overall

— But this cannot be done in-place and has worse
constant factors than heap sort

Hash Structure: don’t even think about trying to
sort with a hash table!

— Finding min item in a hashtable is O(n), so this would
be a slower, more complicated selection sort

Divide and conquer

Divide-and-conquer is a useful technique for solving many kinds of
problems (not just sorting). It consists of the following steps:

1. Divide your work up into smaller pieces (recursively)
2. Conquer the individual pieces (as base cases)
3. Combine the results together (recursively)

algorithm(input) {
if (small enough) {
, solve, and return input

} else {
input into multiple pieces
on each piece
and return results
}

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

Mergesort:
Sort the left half of the elements (recursively)

Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

Quicksort:

Pick a “pivot” element
Divide elements into less-than pivot and greater-than pivot

Sort the two divisions (recursively on each)
Answer is: sorted-less-than....pivot....sorted-greater-than

Merge Sort

Divide: Split array roughly into half

Unsorted

N

Unsorted Unsorted

Conquer: Return array when length <1

Combine: Combine two sorted arrays using merge

Sorted Sorted

~. .

Sorted

CSE373: Data Structures &

25 Algorithms

Merge Sort: Pseudocode

Core idea: split array in half, sort each half, merge
back together. If the array has size 0 or 1, just return it
unchanged

mergesort (input) {
if (input.length < 2) {
return input;

} else {
smallerHalf = sort(input[0, ..., mid]);
largerHalf = sort(input[mid + 1, ...]);

return merge(smallerHalf, largerHalf);

Merge Sort Example

Merge Sort Example

Merge Example

Merge operation: Use 3 pointers and 1 more array

2 4 7 8 1 3 5 6

/ /

Result:

/

CSE373: Data Structures &

29 Algorithms

Merge Example

Merge operation: Use 3 pointers and 1 more array

2 4 7 8 1 3 5 6

/ /

Result:

/

CSE373: Data Structures &

30 Algorithms

Merge Example

Merge operation: Use 3 pointers and 1 more array

2 4 7 8 1 3 5 6

/ /

Result:

/

CSE373: Data Structures &

31 Algorithms

Merge Example

Merge operation: Use 3 pointers and 1 more array

2 4 7 8 1 3 5 6

/ /

Result:

CSE373: Data Structures &
Algorithms

Merge Example

Merge operation: Use 3 pointers and 1 more array

2 4 7 8 1 3 5 6

/ /

Result:

CSE373: Data Structures &
Algorithms

Merge Example

Merge operation: Use 3 pointers and 1 more array

2 4 7 8 1 3 5 6

/ /

Result:

CSE373: Data Structures &
Algorithms

34

Merge Example

Merge operation: Use 3 pointers and 1 more array

2 4 7 8 1 3 5 6

/ /

Result:

CSE373: Data Structures &
Algorithms

Merge Example

Merge operation: Use 3 pointers and 1 more array

2 4 7 8 1 3 5 6

7 /

Result:

CSE373: Data Structures &
Algorithms

Merge Example

Merge operation: Use 3 pointers and 1 more array

2 4 7 8 1 3 5 6

7 /

Result:

/

After Merge: copy result into original unsorted array.
Or you can do the whole process in-place, but it’s more difficult to write

CSE373: Data Structures &
Algorithms

Merge Sort Analysis

Runtime:
subdivide the array in half each time: O(log(n)) recursive calls

— merge is an O(n) traversal at each level
So, the best and worst case runtime is the same: O(n log(n))

—
812|194 |53 |1]|6
Divide — S
- 82 9 4 5316
Divide o g .
s 82 2 4 53 16
Divide 2\ e x pr
1 element 8 2 9 4 5 3 1 6 — O(Iog(n))
Merge Y4 S R4 Nl levels
2 8 49 35 16
Merge \/ \/
4 8 9 1356
e

CSE373: Data Structures &

38 Algorithms

Merge Sort Analysis

Stable?

Yes! If we implement the merge function correctly, merge sort
will be stable.

In-place?

No. Unless you want to give yourself a headache. Merge must
construct a new array to contain the output, so merge sort is
not in-place.

We're constantly copying and creating new arrays at each level...

One Solution: (less of a headache than actually implementing in-
place) create a single auxiliary array and swap between

it and the original on each level.

Quick Sort

Divide: Split array around a ‘pivot’

pivot

numbers > pivot
numbers <= pivot

CSE373: Data Structures &

40 Algorithms

Quick Sort

Divide: Pick a pivot, partition into groups

Unsorted
P P >

Conquer: Return array when length <1

P

<=

Combine: Combine sorted partitions and pivot

~__~

Sorted

<= P

CSE373: Data Structures &

4l Algorithms

Quick Sort Pseudocode

Core idea: Pick some item from the array and call it the pivot. Put all
items smaller in the pivot into one group and all items larger in the

other and recursively sort. If the array has size 0 or 1, just return it
unchanged.

quicksort(input) {

if (input.length < 2) {
return input;

} else {
pivot = getPivot(input);
smallerHalf = sort(getSmaller(pivot, input));
largerHalf = sort(getBigger(pivot, input));
return smallerHalf + pivot + largerHalf;

Think in Terms of Sets

S 81 43 31 57 select pivot value

92 26 @

S Sy partition S
0

Quicksort(S,) and
S1 S) Quicksort(S,)

S 0 1326 31 43 57 65 75 81 9 Presto! S is sorted

[Weiss]

CSE373: Data Structures &
Algorithms

43

Example, Showing Recursion

812|914 |53 |16

Divide — 5 B
. 2431 B 8 9 6
Divide ‘/3 ~ R
- 2 1 4 6 8 9
Divide
N
1 Element 12
Conquer 1'[/
Conquer \ ! Y
1 1 2 3 4 6 8 9
\ | /
Conquer

1 234562389

CSE373: Data Structures &

4 Algorithms

Details

Have not yet explained:

 How to pick the pivot element
— Any choice is correct: data will end up sorted

— But as analysis will show, want the two partitions to
be about equal in size

* How to implement partitioning
— In linear time
— In place

Pivots

* Best pivot? g[2794]5[3]1]6
— Median “ o
— Halve each time 243 1

, g1 2]9]4]5]3]1]6
* Worst pivot? — —

1
— Greatest/least element - 8294536

— Problem of sizen -1
— 0(n?)

Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)...

e Pickarr[lo] orarr[hi-1]
— Fast, but worst-case occurs with mostly sorted input

* Pick random element in the range

— Does as well as any technique, but (pseudo)random number
generation can be slow

— Still probably the most elegant approach

* Medianof3,e.g.,,arr[lo], arr[hi-1], arr|[(hi
+1o0) /2]

— Common heuristic that tends to work well

Partitioning

* Conceptually simple, but hardest part to code up
correctly

— After picking pivot, need to partition in linear time in place

 One approach (there are slightly fancier ones):
1. Swap pivot with arr[lo]
2. Usetwo fingers i and j, starting at lo+1 and hi-1
3. while (i < j)
if (arr[j] > pivot) Jj--
else if (arr[i] < pivot) i++
else swap arr[i] with arr[]]
4. Swap pivot witharr[i] *

*skip step 4 if pivot ends up being least element

Example

Step one: pick pivot as median of 3
— 1lo=0,h1=10

0O 1 2 3 4 5 6 7 8 9

8 | 1149|103 |52]7]|86
Step two: move pivot to the 1o position

0O 1 2 3 4 5 6 7 8 9

6114|9103 |5[2]7]8

Often have more than

Exa mple one swap during partition —

this is a short example

Now partitioninplace || (419 (0l3l5]/2]7]8

/ /

Move fingers 6l114/9]l0|3|5|2]|7]8

Swap

Move fingers

Move pivot

Analysis

* Best-case: Pivot is always the median
T(0)=T(1)=1
T(n)=2T(n/2) + n -- linear-time partition
Same recurrence as mergesort: O(n 1Log n)

 Worst-case: Pivot is always smallest or largest element
T(0)=T(1)=1
T(n) = 1T(n-1) +n
Basically same recurrence as selection sort: O(n?)

* Average-case (e.g., with random pivot)
— O(n log n), not responsible for proof (in text)

Cutoffs

For small n, all that recursion tends to cost more than
doing a quadratic sort

— Remember asymptotic complexity is for large n

Common engineering technique: switch algorithm
below a cutoff

— Reasonable rule of thumb: use insertion sort for n < 10

Notes:
— Could also use a cutoff for merge sort

— Cutoffs are also the norm with parallel algorithms
* Switch to sequential algorithm

— None of this affects asymptotic complexity

Cutoff Pseudocode

void quicksort(int[] arr, int lo, int hi) {
if(hi - lo < CUTOFF)
insertionSort (arr,lo,hi);
else

Notice how this cuts out the vast majority of the recursive calls
— Think of the recursive calls to quicksort as a tree
— Trims out the bottom layers of the tree

CSE373: Data Structures &

>3 Algorithms

Today’s Takeaways

* Understand how basic sorting works:
— insertion sort
— selection sort
— bubble sort

* Understand how nlog(n) sorting works:
— heap sort
— merge sort
— quick sort

* Cool links:
— http://www.sorting-algorithms.com/
— https://www.youtube.com/watch?v=t8g-iYGHpPEA

CSE373: Data Structures &

24 Algorithms

