CSE 373: Data Structures & Algorithms

Pseudocode; ADTs; Priority Queues;
Heaps

Riley Porter
Winter 2017

Winter 2017 CSE373: Data Structures & Algorithms

Course Logistics

HW 1 released Monday. Due a week from Tuesday.

Java Review Session early next week, room and time
TBA and posted on the course website

Slides posted and updated from last time with links
correctly working in PDF version

Pseudocode

Describe an algorithm in the steps necessary, write the
shape of the code but ignore specific syntax.

Algorithm: Count all elements in a list greater than x

Pseudocode:

int counter // keeps track of number > x

while list has more elements {
increment counter 1f current element 1s > than x

move to next element of list

More Pseudocode

Algorithm: Given a list of names in the format "firstName

lastName", make a Map of all first names as keys with sets of last
names as their values

Pseudocode:

create the empty result map

while list has more names to process {
firstName 1s name split up until space
lastName 1s name split from space to the end
1f firstName not 1in the map yet {

put firstName 1n map as a key with an empty
set as the value

}
add lastName to the set for the first name
move to the next name in the 1list

}

Winter 2017 CSE373: Data Structures and Algorithms

Pseudocode Practice

Come up with pseudocode for the following algorithm:

Algorithm: Given a list of integers, find the index of the
maximum integer in the list.

Pseudocode Practice Solution

Algorithm: Given a list of integers, find the index of the
maximum integer in the list.

1f list 1s not empty:
int maxIndex starts at 0 for first index
for each 1ndex 1 1n the list:
1f the element at i1ndex 1 1s greater than
the element at 1ndex maxIndex:
reset maxIndex to 1
return maxIndex
else:

error case: return -17? throw exception?

Winter 2017 CSE373: Data Structures and Algorithms

Terminology Review

— Mathematical description of a "thing" with set of
operations

— A high level, language-independent description of a step-
by-step process

— A specific organization of data and family of algorithms for
implementing an ADT

of a data structure
— A specific implementation in a specific language

Another ADT: Priority Queue

A priority queue holds comparable data

— Given x and y, is x less than, equal to, or greater
thany

— Meaning of the ordering can depend on your data

— Many data structures require this: dictionaries,
sorting

— Typically elements are comparable types, or have
two fields: the and the

Priority Queue vs Queue

Queue: follows First-In-First-Out ordering

: serving customers at a pharmacy, based on
who got there first.

Priority Queue: compares priority of elements
to determine ordering

. emergency room, serves patients with
priority based on severity of wounds

Priorities
Each item has a "priority"
— The lesser item is the one with the greater priority

— So "priority 1" is more important than "priority 4"
— Canresolve ties arbitrarily

Operations:
— insert _
— deleteMin _Insert |
— is empty

deleteMin returns and deletes the item with greatest
priority (lowest priority value)

insert is like enqueue, deleteMin is like dequeue
— But the whole point is to use priorities instead of FIFO

CSE373: Data Structures &

Winter 2017 10

Algorithms

Priority Queue Example

Given the following, what values are a, b, c and d?
insert elementl with priority 5
insert element2 with priority 3
insert element3 with priority 4
a =deleteMin // a ="?
b=deleteMin // b =7
insert element4 with priority 2
insert element5 with priority 6
c =deleteMin // c =7
d =deleteMin // d =7

Priority Queue Example Solutions

insert elementl with priority 5
insert element2 with priority 3
insert element3 with priority 4
a =deleteMin // a = element2
b=deleteMin // b = element3
insert element4 with priority 2
insert element5 with priority 6
c=deleteMin // c = element4
d =deleteMin // d = elementl

N
N

CSE373: Data Structures &

Winter 2017 12 Algorithms

Some Applications

Run multiple programs in the operating system

— critical” before "interactive” before "compute-
intensive", or let users set priority level

Select print jobs in order of decreasing length
"Greedy" algorithms (we’ll revisit this idea)

Forward network packets in order of urgency

Select most frequent symbols for data
compression (Huffman CSE 143)

Sorting (first insert all, then repeatedly
deleteMin)

Possible Implementations

* Unsorted Array
— insert by inserting at the end
— deleteMin by linear search

e Sorted Circular Array
— insert by binary search, shift elements over
— deleteMin by moving “front”

More Possible Implementations

 Unsorted Linked List
— insert by inserting at the front
— deleteMin by linear search

 Sorted Linked List
— insert by linear search
— deleteMin remove at front

* Binary Search Tree
— insert by search traversal
— deleteMin by find min traversal

One Implementation: Heap

Heaps are implemented with Trees

A binary min-heap (or just binary heap or
heap) is a with the properties:
* Structure property: A complete binary tree

* Heap property: The priority of every (non-
root) node is greater than the priority of its
parent

— Not a binary search tree

E :D
Winter 2017 16 CSE373: Data Structu.res &
Algorithms

Tree Review

* root of tree:

* |eaves of tree:
e children of B:
* parent of C:

e subtree C:

* height of tree:
* height of E:

* depth of E:

e degree of B:

e perfect tree:

e complete tree:

CSE373: Data Structures &

Winter 2017 17 Algorithms

Tree Review

 root of tree: A

e |eaves of tree: H,E,F,G
 childrenofB: D, E, F
 parentof C: A

e subtree C:in blue

* height of tree: 3 . perfeft tqée: o
° he|ght Of E' O every level IS compiletely 1u

e complete tree:

* depth of E: 2 all levels full, with a possible

. exception being the bottom level,
* degree of B: 3 which is filled left to right

CSE373: Data Structures &
Algorithms

Winter 2017 18

Structure Property: Completeness

A Binary Heap is a complete binary tree:

— A binary tree with all levels full, with a possible
exception being the bottom level, which is filled

left to right
Examples:
’ (80
\a N

are these trees complete?

CSE373: Data Structures &

Winter 2017 19 Algorithms

Structure Property: Completeness

A Binary Heap is a complete binary tree:

— A binary tree with all levels full, with a possible
exception being the bottom level, which is filled

left to right incomplete
Examples: complete
’ (80
\ N

CSE373: Data Structures &

Winter 2017 20 Algorithms

Heap Order Property

* The priority of every (non-root) node is
greater than (or equal to) that of it's parent.

AKA the children are always greater than the
parents.

z G3)
0 GO @w @D QOGO @

which of these follow the heap order property?

Winter 2017 21 CSE373: Data Structu.res &
Algorithms

Heap Order Property

* The priority of every (non-root) node is
greater than (or equal to) that of it's parent.
AKA the children are always greater than the

P4 rents. heap property not the heap property

z G
Q0 @ G 20 QG G

Winter 2017 22 CSE373: Data Structu.res &
Algorithms

Heaps

A binary min-heap (or just binary heap or just heap) is:
* Structure property: A complete binary tree

* Heap property: The priority of every (non-root) node is greater
than (or equal to) the priority of its parent. AKA the children are
always greater than the parents.

— Not a binary search tree

® R 5 @
°

which of these are heaps?

CSE373: Data Structures &

Winter 2017 23 Algorithms

Heaps

A binary min-heap (or just binary heap or just heap) is
* Structure property: A complete binary tree

* Heap property: The priority of every (non-root) node is greater
than (or equal to) the priority of its parent. AKA the children
are always greater than the parents.

— Not a binary search tree

g ey

not a heap not a heap a heap

CSE373: Data Structures &

Winter 2017 24 Algorithms

Heaps
 Where is the highest-priority item?

* What is the height of a heap with n items?

* How do we use heaps to implement the
operations in a Priority Queue ADT?

CSE373: Data Structures &

Winter 2017 25 Algorithms

Heaps

 Where is the highest-priority item?
At the root (at the top)

* What is the height of a heap with n items

log,n (We’ll look at computing this
next week)

* How do we use heaps to implement the
operations in a Priority Queue ADT?

See following slides

CSE373: Data Structures &

Winter 2017 26 Algorithms

Operations: basic idea

* deleteMin:

l. answer =

2.

root.data

Move right-most node in
last row to root to restore
structure property

"Percolate down" to
restore heap property

 jnsert:

1.

Winter 2017

Put new node in next
position on bottom row to
restore structure property

"Percolate up" to restore
heap property

27

Overall strategy:
e Preserve structure property

e Break and restore heap
property

CSE373: Data Structures &
Algorithms

deleteMin

()
1. Delete (and later () (3)

return) value at root DO 6
node
(9 (6w

Winter 2017
er CSE373: Data Structures & Algorithms

2. Restore the Structure Property

e We now have a "hole" at
the root

— Need to fill the hole with
another value

* When we are done, the tree
will have one less node and
must still be complete

3. Restore the Heap Property

Percolate down:

« Keep comparing with both children
« Swap with lesser child and go down one level
* What happens if we swap with the larger child?
* Done if both children are = item or reached a leaf node

Winter 2017 CSE373: Data Structures & Algorithms

Insert

e Add a value to the tree

e Afterwards, structure and

heap properties must still
be correct

e Where do we insert the
new value?

Insert: Maintain the Structure
Property

* There is only one valid tree
shape after we add one
more node

* So put our new data there
and then focus on restoring
the heap property

Maintain the heap property

Percolate up:

* Put new data in new location

* |f parent larger, swap with parent, and continue
* Done if parent < item or reached root

Winter 2017 CSE373: Data Structures & Algorithms

Array Representation of Binary Trees

From node 1i:

left child: 1*2
right child: 1 *2+1
parent: 1/2

(wasting index O is
convenient for the
index arithmetic)
implicit (array) implementation:

A| B | C | D/|E F | G| H I J K | L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

CSE373: Data Structures

Winter 2017 Algorithms

Judging the array implementation

Plusses:
* Less "wasted" space
— Just index 0 and unused space on right

— In conventional tree representation, one edge per node (except
for root), so n-1 wasted space (like linked lists)

— Array would waste more space if tree were not complete

 Multiplying and dividing by 2 is very fast (shift operations in
hardware)
* Last used position is just index size

Minuses:

* Same might-be-empty or might-get-full problems we saw with
stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: "this is how people do it"

CSE373: Data Structures &

Winter 2017 35 Algorithms

