CSE 373: Data Structures & Algorithms
Spanning Trees and Minimum Spanning Trees

Riley Porter
Winter 2017

CSE373: Data Structures & Algorithms

Course Logistics

* HW4 due tonight

* HWS5 out tomorrow (more graphs!)
— coding: Dijkstra’s shortest path algorithm

— written: lots of practice with BFS, DFS, Topological
Sort, and Spanning Trees (today!)

 Midterm regrades due by the end of this week

Problem Statement

Given a connected undirected graph G=(V,E), find a
minimal subset of edges such that G is still connected

— A graph G2=(V,E2) such that G2 is connected and
removing any edge from E2 makes G2 disconnected

CSE373: Data Structures &
Algorithms

Observations

1. Problem not defined if original graph not connected.
Therefore, we know |E| >= |V|-1

2. Any solution to this problem is a tree
— Recall a tree does not need a root; just means acyclic
— For any cycle, could remove an edge and still be connected

3. Solution not unique unless original graph was already a
tree

4. Atree with |V| nodes has |V]|-1 edges

— So every solution to the spanning tree problem has |V|-1
edges

Motivation

A spanning tree connects all the nodes with as few edges as
possible

In most compelling uses, we have a weighted undirected
graph and we want a tree of least total cost

 Example: Electrical wiring for a house or clock wires on a
chip

 Example: A road network if you cared about asphalt cost
rather than travel time

This is the minimum spanning tree problem
— Will do that next, after intuition from the simpler case

CSE373: Data Structures &
Algorithms

Two Approaches

Different algorithmic approaches to the
spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search,
but any traversal will do), keeping track of
edges that form a tree

2. lterate through edges; add to output any
edge that does not create a cycle

Spanning tree via DFS

spanning tree (Graph G) {
for each node v:
v.marked = false
dfs (someRandomStartNode)
}
dfs (Vertex a) { // recursive DFS
a.marked = true
for each b adjacent to a:
if('b.marked) {
add (a,b) to output
dfs (b)

}

Correctness: DFS reaches each node in connected graph.
We add one edge to connect it to the already visited nodes.
Order affects result, not correctness. Runtime: O(|E|)

Example

dfs(1) 2

Output:

CSE373: Data Structures &
Algorithms

dfs(1)

Pending

Ca
C

C

Istack:

fs(2)
fs(5)

dfs(6)

Output:

Example

CSE373: Data Structures &
Algorithms

dfs(2)

Pending

Cal

stack:

fs(7)
fs(3)
fs(5)
fs(6)

Example

Output: (1,2)

10

CSE373: Data Structures &
Algorithms

Example
dfs(7) ,

Pending

Callstack:
dfs(5)
dfs(4)
dfs(3)
estS)

dfs(6) Output: (1,2), (2,7)

CSE373: Data Structures &

H Algorithms

Example
dfs(5) 2

Pending
Callstack:
dfs(4)
dfs(6)
dis{4) 5
dfs(3)
d—f—S-(—é—) Output: (1,2), (2,7), (7,5)

CSE373: Data Structures &

2 Algorithms

dfs(4)

Pending

Callstack:

dfs(3)
dfs(6)
efst3;

Example

Output: (1,2), (2,7), (7,5), (5,4)

13

CSE373: Data Structures &
Algorithms

Example

dfs(3) 2

Pending
Callstack:
dfs(6)

Output: (1,2), (2,7), (7,5), (5,4), (4,3)

CSE373: Data Structures &

1 Algorithms

Example

dfs(6) 2

Pending
Callstack:

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

CSE373: Data Structures &

o Algorithms

Example

Bubble up the
recursive 2
callstack.

lgnore each
edge that
would have
been
considered,
but now is
adjacentto a 5
vertex already

marked true.

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

CSE373: Data Structures &

16 Algorithms

Second Approach

Iterate through edges; output any edge that does not
create a cycle

Correctness (hand-wavy):
— Goal is to build an acyclic connected graph
— When we add an edge, it adds a vertex to the tree
— The graph is connected, so we reach all vertices

Efficiency:
— Depends on how quickly you can detect cycles
— Reconsider after the example

Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5),
(4,7) ?

Output:

CSE373: Data Structures &
Algorithms

18

Example

Edges in some arbitrary order:

) (314)1 (516)1 (517)1(115)1 (116)1 (217)1 (213)1
(4,5), (4,7) 2

1

Output: (1,2)

CSE373: Data Structures &

9 Algorithms

Example

Edges in some arbitrary order:

, , (5,6), (5,7),(1,5), (1,6), (2,7), (2,3),
(4,5), (4,7) 2

1

Output: (1,2), (3,4)

CSE373: Data Structures &

20 Algorithms

Example
Edges in some arbitrary order:

, , , (5,7),(1,5), (1,6), (2,7), (2,3),
(4,5), (4,7) 2

1

Output: (1,2), (3,4), (5,6),

CSE373: Data Structures &

21 Algorithms

Example
Edges in some arbitrary order:

, s 4(1,5),(1,6),(2,7),(2,3),
(4,5), (4,7) ;

1

Output: (1,2), (3,4), (5,6), (5,7)

CSE373: Data Structures &

22 Algorithms

Example
Edges in some arbitrary order:

y o, (14,6),(2,7),(2,3),
(4,5), (47) :

5

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

CSE373: Data Structures &

23 Algorithms

Example
Edges in some arbitrary order:

y s, (127),(2,3),
(4,5), (4,7) :

1

5
Output: (1,2), (3,4), (5,6), (5,7), (1,5)

CSE373: Data Structures &

24 Algorithms

Example

Edges in some arbitrary order:

Y 4 Y 4 V4 V4 Y 4 V4 V4 (213)1
(4,5), (4,7) ?

1

5
Output: (1,2), (3,4), (5,6), (5,7), (1,5)

CSE373: Data Structures &

22 Algorithms

Example
Edges in some arbitrary order:

4 4 4 4 4 4

(4,5’), (4,7’) ?

1

Can stop once we
5 have |V|-1 edges

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

CSE373: Data Structures &

26 Algorithms

Cycle Detection

To decide if an edge could form a cycle is O(|V])

because we may need to traverse all edges already in
the output

So overall algorithm would be O(|V] |E])

But there is a faster way we know: use union-find!
— Initially, each item is in its own 1-element set

— Union sets when we add an edge that connects them
— Stop when we have one set

Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-
tree algorithm to detect cycles:

Invariant: u and v are connected in output-so-far
iff
u and v in the same set

* |nitially, each node is in its own set

* When processing edge (u,v):
— If £ind (u) equals £ind (v), then do not add the edge
— Else add the edge and union (find (u) , £find (v))
— O(|E]) operations that are almost O(1) amortized

Summary So Far

The spanning-tree problem
— Add nodes to partial tree approach is O(|E|)
— Add acyclic edges approach is almost O(|E|)

* Using union-find

But really want to solve the minimum-spanning-tree
problem

— Given a weighted undirected graph, give a spanning tree
of minimum weight

— Same two approaches will work with minor modifications
— Both will be O(|E|1og|V])

CSE373: Data Structures &

29 Algorithms

MST: Getting to the Point

Algorithm #1: Prim’s Algorithm

Find Minimum Spanning Trees like Dijkstra’s
Algorithm finds Shortest-Path.

— Both based on expanding cloud of known vertices,
basically using a priority queue instead of a DFS stack

Algorithm #2: Kruskal’s Algorithm

finds Minimum Spanning Trees exactly like our 2nd
greedy approach to spanning tree, but process
edges in cost order instead of random order

CSE373: Data Structures &

30 Algorithms

Prim’s Algorithm Idea

|dea: Grow a tree by adding an edge from the
“known” vertices to the “unknown” vertices.
Pick the edge with the smallest weight that
connects “known” to “unknown.”

Recall Dijkstra “picked edge with closest known
distance to source”

— That is not what we want here
— Otherwise identical (!)

The Algorithm

1. Foreachnodew, set v.cost = o and v.known =
false

2. Choose any node v
a) Mark v as known
b) Foreach edge (v,u) with weightw, set u.cost=w and
u.prev=v
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known andadd (v, v.prev) tooutput
c) Foreachedge (v,u) with weight w,
if(w < u.cost) {
u.cost = w;
u.prev = v;

}

Example

vertex | known? cost prev
A 0
B 0
C o)
D 0
E 0
F 0
G o0

33

CSE373: Data Structures &

Algorithms

Example

vertex | known? cost prev
A Y 0
B 2 A
C 2 A
D 1 A
E 0
F 0
G o0

CSE373: Data Structures &

34 Algorithms

Example

vertex | known? cost prev

A Y 0

B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 3) D

35

CSE373: Data Structures &

Algorithms

Example

vertex | known? cost prev

A Y 0

B 2 A
C Y 1 D
D Y 1 A
E 1 D
F 2 C
G 3) D

36

CSE373: Data Structures &

Algorithms

Example

vertex | known? cost prev

A Y 0

B 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

CSE373: Data Structures &

37 Algorithms

Example

vertex | known? cost prev

A Y 0

B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

CSE373: Data Structures &

38 Algorithms

Example

vertex | known? cost prev

A Y 0

B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G 3 E

CSE373: Data Structures &

39 Algorithms

Example

vertex | known? cost prev

A Y 0

B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G Y 3 E

CSE373: Data Structures &

40 Algorithms

Prim’s Analysis

* Correctness
— A bit tricky: Intuitively similar to Dijkstra
— Proof by contradiction. If there is an edge that is
smaller connecting unknown node v to the known

tree, we would have found it from the known cloud or
we would be choosing it (true at every step/node v).

* Run-time
— Same as Dijkstra
— O(|V|1og]|V]| + |E| Log|V]) using a priority queue

» Costs/priorities are just edge-costs, not path-costs

Kruskal’s Algorithm

Idea: Grow a forest out of edges that do not grow a cycle,
just like for the spanning tree problem.
— But now consider the edges in order by weight

Runtime (using sorting):
— Sort edges: O(|E|1og |E|) (sorting is next course topic)

— lterate through edges using union-find for cycle detection
almost O(|E|)

Somewhat better (using a priority queue):
— Floyd’s algorithm to build min-heap with edges O(|E|)

— lterate through edges, using union-find for cycle detection
and deleteMin to get next edge O(|E| 1Log|E]|)

— Not better worst-case asymptotically, but often stop long
before considering all edges and the up front cost is cheaper

Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set

3. While output size < |V|-1
— Consider next smallest edge (u,v)

— if £find (u) and £ind (v) indicates u and v are in
different sets
output (u,wv)
. union (find(u) ,find(v))

Recall invariant:
u and v in same set iff connected in output-so-far

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)

3: (E,QG)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1 , (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,QG)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:

: , , (B,E), (D,E)
. (A,B), (C,F), (A,C)

. (E,G)

. (D,G), (B,D)

. (D,F)

10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

CSE373: Data Structures &

46 Algorithms

Example

Edges in sorted order:
1: , , , (D,E)
2: (A,B), (C,F), (A,C)

3: (E,QG)

5

6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

CSE373: Data Structures &

47 Algorithms

Example

Edges in sorted order:

1: , , ,
2: (A,B), (C,F), (A,C)
3: (E,QG)
5
6

. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

CSE373: Data Structures &

48 Algorithms

Example

Edges in sorted order:

(CF), (AC)

. (E,G)
. (D,G), (B,D)
. (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

CSE373: Data Structures &

49 Algorithms

Example

Edges in sorted order:

’

’ ’ (AIC)

. (D,G), (B,D)
. (D,F)
10: (F,G)

1
2:
3: (E,QG)
5
6

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

CSE373: Data Structures &

20 Algorithms

Example

Edges in sorted order:

’) ’

’

. (D,G), (B,D)
. (D,F)
10: (F,G)

1
2: ,
3: (E,QG)
5
6

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

CSE373: Data Structures &

o1 Algorithms

Example

Edges in sorted order:
1: , , ,
2: , ,

3:

5: (D,G), (B,D)

6: (D,F)

10: (F,QG)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

CSE373: Data Structures &

>2 Algorithms

Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it T,.

Suppose T, is not minimum:
Pick another spanning tree T_._ with lower cost than T,
Pick the smallest edge e,=(u,v) in T thatisnotinT .

T, already hasapathpinT, . fromutov
= Adding e, to T, . will createacycleinT,

Pick an edge e, in p that Kruskal’s algorithm considered after
adding e, (must exist: u and v unconnected when e,
considered)
= cost(e,) = cost(e,)
=> can replace e, with e, in T_. without increasing cost!

Keep doing this until T . is identical to T,
= T, must also be minimal — contradiction!

CSE373: Data Structures & Algorithms

53

Today’s Takeaways

 Understand Spanning Trees and some greedy
algorithms (graph traversal + disjoint sets) for
finding them

* Understand Minimum Spanning Trees, and the
two main algorithms for finding them:

— Prim’s: like Dijkstra’s, but pick the least cost edge

— Kruskal’s:

54

