CSE 373: Data Structures & Algorithms

More Sorting and Beyond Comparison Sorting

Riley Porter
Winter 2017

CSE373: Data Structures & Algorithms

Course Logistics

* HWS5 due in a couple days = more graphs!
Don’t forget about the write-up!

* HW6 out later today = sorting (and to a
lesser degree reading specs/other files/
tests).

* Final exam in 2 weeks!

Review: Sorting: The Big Picture

O(n2) O(n)
< >
Simple Fancier Comparison Specialized
algorithms: algorithms: lower bound: algorithms:
O(n?) O(n log n) Q(n log n) O(n)
Insertion sort Heap sort Bucket sort
Selection sort Merge sort Radix sort

Bubble sort

Quick sort (avg)

Handling
huge data
sets

CSE373: Data Structures &

Algorithms

Quick Sort

Divide: Split array around a ‘pivot’

VA RN

pivot

numbers > pivot
numbers <= pivot

Quick Sort

Divide: Pick a pivot, partition into groups

<=P

Conquer: Return array when length <1

Unsorted

P

Combine: Combine sorted partitions and pivot

<=P

P

Sorted

>P

Quick Sort Pseudocode

Core idea: Pick some item from the array and call it the pivot. Put all
items smaller in the pivot into one group and all items larger in the

other and recursively sort. If the array has size 0 or 1, just return it
unchanged.

quicksort(input) {

if (input.length < 2) {
return input;

} else {
pivot = getPivot(input);
smallerHalf = sort(getSmaller(pivot, input));
largerHalf = sort(getBigger(pivot, input));
return smallerHalf + pivot + largerHalf;

Think in Terms of Sets

S 81 43 31 57 select pivot value

92 26 @

S1 Sy partition S
0

Quicksort(S,) and
S1 S) Quicksort(S,)

S 0 1326 31 43 57 65 75 81 9 Presto! S is sorted

[Weiss]

CSE373: Data Structures &
Algorithms

Quick Sort Example: Divide

Pivot rule: pick the element at index O

/\ -

J} |

{%

Quick Sort Example: Combine

Combine: this is the order of the elements we’ll care about when combining

/\ —

J} |

{%

Quick Sort Example: Combine

Combine: put left partition < pivot < right partition

/\ N

~
A |

Details

Have not yet explained:

 How to pick the pivot element
— Any choice is correct: data will end up sorted

— But as analysis will show, want the two partitions to
be about equal in size

* How to implement partitioning
— In linear time
— In place

Pivots

* Worst pivot? s[2]9]4]5]3]1]6
— Greatest/least element L e9s945136

— Recurse on problem of sizen—1

* Best pivot?

— Median P —
24 3 1

— Halve each time

Potential pivot rules

Pick first or last element: fast, but worst-case occurs with
mostly sorted input (as we’ve seen)

Try looping through the array: we’ll get a good value, but
that’s slow and hard to implement

Pick random element: cool, does as well as any technique,
but (pseudo)random number generation can be slow

Pick the median of first, middle, and last: Easy to implement
and is a common heuristic that tends to work well

e.g.,arr[lo], arr[hi-1], arr[(hi+lo) /2]

CSE373: Data Structures &

13 Algorithms

Median Pivot Example

Pick the median of first, middle, and last

Median =6

Swap the median with the first value

e)

Pivot is now at index O, and we’re ready to go

CSE373: Data Structures &

4 Algorithms

Partitioning

* Conceptually simple, but hardest part to code up
correctly

— After picking pivot, need to partition in linear time in place

 One approach (there are slightly fancier ones):
1. Putpivotinindex lo
2. Use two pointers i and j, starting at 1lo+1 and hi-1
3. while (1 < j)
if (arr[j] > pivot) Jj--
else if (arr[i] < pivot) i++
else swap arr[i] with arr[]]
4. Swap pivot witharr[i] *

*skip step 4 if pivot ends up being least element

Example

Step one: pick pivot as median of 3
— 1lo=0,h1=10

0O 1 2 3 4 5 6 7 8 9

8 | 1149|103 |52]7]|86
Step two: move pivot to the 1o position

0O 1 2 3 4 5 6 7 8 9

6149|0352]7]8

Quick Sort Partition Example

6|14 (9]0 |3|5]7|2]8

614|910 |3|5|7|2]|38

Quick Sort Analysis

* Best-case: Pivot is always the median, split data in half

Same as mergesort: O(n 1og n), O(n) partition work
for O(log(n)) levels

 Worst-case: Pivot is always smallest or largest element
Basically same as selection sort: O(n?)

* Average-case (e.g., with random pivot)
— O(n 1og n), you're not responsible for proof (in text)

Quick Sort Analysis

* In-place: Yep! We can use a couple pointers
and partition the array in place, recursing on
different lo and hi indices

e Stable: Not necessarily. Depends on how you
handle equal values when partitioning. A
stable version of quick sort uses some extra
storage for partitioning.

Divide and Conquer: Cutoffs

For small n, all that recursion tends to cost more
than doing a simple, quadratic sort

— Remember asymptotic complexity is for large n

Common engineering technique: switch algorithm
below a cutoff

— Reasonable rule of thumb: use insertion sort for n < 10

Notes:

— Cutoffs are also the norm with parallel algorithms
* Switch to sequential algorithm

— None of this affects asymptotic complexity

Cutoff Pseudocode

void quicksort(int[] arr, int lo, int hi) {
if(hi - lo < CUTOFF)
insertionSort (arr,lo,hi);
else

Notice how this cuts out the vast majority of the recursive calls
— Think of the recursive calls to quicksort as a tree
— Trims out the bottom layers of the tree

CSE373: Data Structures &

21 Algorithms

Cool Comparison Sorting Links

Visualization of sorts on different inputs:
http://www.sorting-algorithms.com/

Visualization of sorting with sound:
https://www.youtube.com/watch?v=t8g-iYGHpEA

Sorting via dance:
https://www.youtube.com/watch?v=XagR3G NVoo

XKCD Ineffective sorts:
https://xkcd.com/1185/

CSE373: Data Structures &
Algorithms

22

Sorting: The Big Picture

Simple Fancier Comparison
algorithms: algorithms: lower bound:
O(n?) O(n log n) Q(n log n)
Insertion sort Heap sort
Selection sort Merge sort

Quick sort (avg)

Specialized
algorithms:
O(n)

|

Bucket sort
Radix sort

Handling
huge data
sets

How Fast Can We Sort?

Heapsort & mergesort have O(n 1og n) worst-case
running time

Quicksort has O(n 1og n) average-case running time

These bounds are all tight, actually ®(n 1og n)

Assuming our comparison model: The only operation an algorithm can
perform on data items is a 2-element comparison. There is no lower
asymptotic complexity, such as O(n) or O(n 1log logn)

Counting Comparisons

No matter what the algorithm is, it cannot make
progress without doing comparisons

Intuition: Each comparison can at best eliminate half the
remaining possibilities of possible orderings

Can represent this process as a decision tree
— Nodes contain “set of remaining possibilities”
— Edges are “answers from a comparison”

— The algorithm does not actually build the tree; it’s what
our proof uses to represent “the most the algorithm could
know so far” as the algorithm progresses

CSE373: Data Structures &

25 Algorithms

Decision Tree forn =3

a<b<c
a<c<b
c<a<b

a<b<c,b<c<a,
a<c<b,c<a<b,

 b<a<c,c<b<a |

/

b a

S

b<a<c
b<c<a
c<b<a

a<?/\\3>c

a<b<c
a<c<b

L\

c<a<b

bi}//\\g>c

a<b<c a<c<b

X <.VAV} L

b<a<c
b<c<a
\\

 The leaves contain all the possible orderings of a, b, ¢

26

c<b<a

pd
c<‘y ¥>a

b<c<a b<a<c

CSE373: Data Structures &

Algorithms

<b

/ possible orders

S

Exampleifa<c

a<b<c,b<c<a,
a<c<b,c<a<hb,
b<a<c,c<b<a |

410

a<b<c a b<a<c

a<c<b b<c<a

c<a<b c<p<a
a<?/\\3>c b<§/\\3>c
a<b<c| c<a<b b<a<c | c<b<a
a<l(\;<b b</c\<a

a<b<c

b<% w‘>c

a<c<b‘\\
actual order

27

c<y X>a

b<c<a b<a<c

CSE373: Data Structures &

Algorithms

What the Decision Tree Tells Us

A binary tree because each comparison has 2 outcomes
(we're comparing 2 elements at a time)

 Because any data is possible, any algorithm needs to ask
enough questions to produce all orderings.

The facts we can get from that:
1. Each ordering is a different leaf (only one is correct)

2. Running any algorithm on any input will at best

correspond to a root-to-leaf path in some decision tree.

Worst number of comparisons is the longest path from
root-to-leaf in the decision tree for input size n

3. There is no worst-case running time better than the
height of a tree with <num possible orderings> leaves

CSE373: Data Structures & Algorithms

28

How many possible orderings?

 Assume we have n elements to sort. How many permutations of
the elements (possible orderings)?

— For simplicity, assume none are equal (no duplicates)

Example, n=3
a[0]<a[l]<a[2] a[0]<a[2]<a[1] a[1l]<a[0]<a[2]
a[l]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[l]<a[0]

In general, n choices for least element, n-1 for next, n-2 for next, ...
— n(n-1)(n-2)...(2)(1) = n! possible orderings

That means with n! possible leaves, best height for tree is log(n!),
given that best case tree splits leaves in half at each branch

What does that mean for runtime?

That proves runtime is at least (1og (n!)). Can we write that more clearly?

Nice! Any sorting algorithm must do at best (1/2)*(nlogn — n)comparisons: Q(nlog n)

CSE373: Data Structures &

30 Algorithms

Sorting: The Big Picture

Simple Fancier Comparison
algorithms: algorithms: lower bound:
O(n?) O(n log n) Q(n log n)
Insertion sort Heap sort
Selection sort Merge sort

Quick sort (avg)

Specialized
algorithms:
O(n)

|

Bucket sort
Radix sort

Handling
huge data
sets

BucketSort (a.k.a. BinSort)

e |fall values to be sorted are known to be integers
between 1 and K (or any small range):
— Create an array of size K
— Put each element in its proper bucket (a.k.a. bin)
— If data is only integers, no need to store more than a count
of how times that bucket has been used

* OQutput result via linear pass through array of buckets

count array e Example:

1 3 K=5

input (5,1,3,4,3,2,1,1,5,4,5)

output: 1,1,1,2,3,3,4,4,5,5,5

NP [WOIDN
WININ|-

Analyzing Bucket Sort

Overall: O(n+K)
— Linear in n, but also linear in K

Good when Kis smaller (or not much larger) than n
— We don’t spend time doing comparisons of duplicates

Bad when K'is much larger than n
— Wasted space; wasted time during linear O(K) pass

For data in addition to integer keys, use list at each
bucket

Bucket Sort with non integers

 Most real lists aren’t just keys; we have data
e Each bucket is a list (say, linked list)

 To add to a bucket, insert in O(1) (at beginning, or keep
pointer to last element)

e Example: Movie ratings; scale 1-5

count array |nput:

1 —> RockyV 5: Casablanca

2 3: Harry Potter movies

3 —+> Harry Potter 5: Star Wars Original Trilogy
4 1: Rocky V

5 —+> Casablanca —— Star Wars

*Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
*Easy to keep ‘stable’; Casablanca still before Star Wars

Radix sort

* Radix = “the base of a number system”
— Examples will use base 10 because we are used to that

— In implementations use larger numbers
* For example, for ASCII strings, might use 128

* |dea:

— Bucket sort on one digit at a time
* Number of buckets = radix
 Starting with /east significant digit
* Keeping sort stable
— Do one pass per digit
— Invariant: After k passes (digits), the last k digits are sorted

Radix Sort Example
Radix = 10
Input: 478,537,9, 721, 3, 38, 143, 67

3 passes (input is 3 digits at max), on each pass, stable sort the input highlighted in yellow

478 71211 0/03 003
537 00i3 0/09 009
009 14/3 712 1 038
721 mmmmm) 537 wmmmmm) 537 wm) 06)7
003 067 0138 143
038 4|7/8 1143 4|7 8
143 03/8 016 7 537
067 009 417 8 721

CSE373: Data Structures &

36 Algorithms

Example

Radix = 10 o1 |2]3]4]l5]6]7]s8]09
721 3 537 | 478 |9
143 67 |38
Input: 478

P Order now: | 721
537 First pass: 003

9 .

bucket sort by ones digit

721 143
3 537
38 067
143 478
67 038
009

Example

Radix = 10

Order was:

1| 2| 3] 4 6 | 7] 8
721 3 537 | 478
143 67 | 38
— =
1| 2| 3] 4 6 | 7] 8
721 | 537 | 143 67 |478
38

721
003
143
537
067
478
038
009

Second pass:

stable bucket sort by tens digit

Order now: | 003

009
721
537
038
143
067
478

Example

Radix = 10

Order was:

003
009
721
537
038
143
067
478

0 1 2 3 4 S 6 7 9
3 721 | 537 | 143 67 | 478
9 38
0 1 2 3 4 S 6 7 9
3 143 478 | 537 721
9
38
67 Order now:| 003
009
Third pass: 038
stable bucket sort by 100s digit 067
143
478
537

721

Analysis

Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)
Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but
often not
— Example: Strings of English letters up to length 15
* Run-time proportional to: 15*%(52 + n)
* Thisis less than nlog n only if n > 33,000

e Of course, cross-over point depends on constant factors of the
implementations

Sorting Takeaways

Simple O(n?) sorts can be fastest for small n
— Selection sort, Insertion sort (latter linear for mostly-sorted)
— Good for “below a cut-off” to help divide-and-conquer sorts
O(n 1og n) sorts
— Heap sort, in-place but not stable nor parallelizable
— Merge sort, not in place but stable and works as external sort

— Quick sort, in place but not stable and O(n?) in worst-case
» Often fastest, but depends on costs of comparisons/copies

Q (n 1og n) is worst-case and average lower-bound for
sorting by comparisons

Non-comparison sorts

— Bucket sort good for small number of possible key values

— Radix sort uses fewer buckets and more phases

Best way to sort? It depends!

