CSE 373: Data Structures & Algorithms
Hash Tables

Riley Porter
Winter 2017

Winter 2017 CSE373: Data Structures & Algorithms

Course Logistics

e HW?2 clarification posted on spec: buildQueue
replaces elements, not adds them.

 Weekly Summaries changed to Topic Summaries,
first one out on amortized runtime, rest out soon.

Review + Motivating Hash Tables

insert find delete
Unsorted linked-list O(1) O(n) O(n)
Unsorted array 0O(1) O(n) O(n)
Sorted linked list O(n) O(n) O(n)
Sorted array O(n) Oflogn) O(n)
BST O(n) O(n) O(n)
AVL Tree O(logn) O(logn) O(logn)
Magic Array? 0(1) 0O(1) 0O(1)

Sufficient “magic”:
Use key to compute array index for an item in O(1) time [doable]
Have a different index for every item [magic]

Winter 2017 3

Motivating Hash Tables

* Let’s say you are tasked with counting the frequency of
integers in a text file. You are guaranteed that only the
integers 0 through 100 will occur:

For example:5,7,8,9,9,5,0,0,1, 12
Result:0>2 121 522 721 8->1 9->2

What structure is appropriate?
Tree?
List?

amaye 2 [[] 2] a2

o 1 2 3 4 5 6 7 8 9

CSE373: Data Structures &
Algorithms

Motivating Hash Tables

Now what if we want to associate name to phone
number?

Suppose keys are first, last names
— how big is the key space?

What if we could map a large set of keys to a small
amount of space? Like mapping all possible
strings to the set of numbers from 1 to 100?

Hash Functions

« Maps any key to a number
— result should be constrained to some range

— passing in the same key should always give
the same result

« Keys should be distributed over a range
— very bad if everything hashes to 1!
— should "look random”

« How would we write a hash function for
String objects?

Hash Functions

An ideal hash function:
* Fastto compute

* “Rarely” hashes two “used” keys to the same index
— Often impossible in theory but easy in practice
— Will handle collisions later

hash function:
index = h(key)

>

key space (e.g., integers, strings) TableSize -1

hash table

0

CSE373: Data Structures &

Algorithms

Using hash functions for Hash Tables

e Aim for constant-time (i.e., O(1)) £ind, insert, and delete

— “On average” under some often-reasonable assumptions

* A hash table is an array of some fixed size

e Basicidea:

key space (e.g., integers, strings)

hash table
0
hash function:
index = h(key)
>
TableSize -1

CSE373: Data Structures &

Algorithms

Example of Hash Table used for
Dictionary of phone numbers

hash
keys function buckets
00
: 0l | 521-8976
John Smith
02 | 521-1234
' ' 03
Lisa Smith .

Sandra Dee
T—— 14| 521-9655

15

Hash Tables vs. Balanced Trees

* |nterms of a Dictionary ADT for just insert, £ind,
delete, hash tables and balanced trees are just different
data structures

— Hash tables O(1) on average (assuming we follow good practices)
— Balanced trees O(1og n) worst-case

* Constant-time is better, right?
— Yes, but you need “hashing to behave” (must avoid collisions)
— Yes, but your data will not be stored in a sorted order

— Yes, but £findMin, findMax, predecessor, and
successor go from O(log n) to O(n), printSorted from
O(n) to O(n 1og n)

Examples of Hash Tables

Really, any dictionary or collection that doesn’t need
to be sorted.

 Compiler: All possible identifiers allowed by the
language vs. those used in some file of one program

* Database: All possible student names vs. students
enrolled

* Al: All possible chess-board configurations vs. those
considered by the current player

Review: Mod

Mod is the remainder function

To keep hashed values within the size of the table, we will
generally do:

h(K) = function(K) % TableSize

As a reference, useful properties of mod:
—(a+b)%c=[(a%c)+(b%c)]%c
—(ab)%c=[(a%c)(b%c)] %c
—a%c=b%c >(a—-b)%c=0

12

Example: Simple Integer Hash Function

* key space K = integers
e TableSize =7

* h(K)=K% 7

* |nsert: /7, 18, 41

SN N A W N =D

18

41

13

Designing Hash Functions

Often based on modular hashing:
h(K) = f(K) % P
P is typically the TableSize

P is often chosen to be prime:
— Reduces likelihood of collisions due to patterns in data

— Is useful for guarantees on certain hashing strategies
(as we’ll see)

Equivalent objects MUST hash to the same location

14

Hashing Objects in Java

« All Java objects contain the following
method:

public 1nt hashCode ()
Returns an integer hash code for this object.

— We can call hashCode on any object to find its
preferred index.

« How is hashCode implemented?

— Depends on the type of object and its state.

« Example: a String's hashCode adds the ASCII values
of its letters.

— You can write your own hashCode methods in
classes you write.

« All classes come with a default version based on
memory address.

15

Java String’s hashCode

 The hashCode function inside string objects could
look like this:

public 1nt hashCode () {
int hash = 0;
for (int 1 = 0; 1 < this.length(); 1i++) {
hash = 31 * hash + this.charAt(i);
}

return hash;

}

— As with any general hashing function, collisions are
possible.

« Example: "Ea" and "FB" have the same hash value.

— Early versions of Java examined only the first 16
characters. For some common data this led to poor
hash table performance.

Hashing your own Objects

For objects with several fields, usually best to have most
of the “identifying fields” contribute to the hash to avoid
collisions

Example:

public class Person
private String first;

private String middle;
private String last;
private Date birthdate;

}
An inherent trade-off: hashing-time vs. collision-avoidance
« Badidea(?): Use only first name
* Good idea(?): Use only middle initial? Combination of fields?
e Admittedly, what-to-hash-with is often unprincipled ®

Note: Equal Objects MUST hash the same

* The Java library makes a very important assumption that
clients must satisfy...

If a.equals(b), then we require
a.hashCode () == b.hashCode()

* |f you ever override equals

— You need to override hashCode also in a consistent way
— See Corelava book, Chapter 5 for other "gotchas" with equals

18

Collisions

« collision: When hash function maps 2 values to same
index.
h(k) = k % tableSize;
set.add (11);

index| 0| 12| 3|4 |5|6|7|8]|09
value| 0| 0| 0| O0|O0O]O0O|O0]O0]0O0¢{0O0

Collisions

« collision: When hash function maps 2 values to same
index.
h(k) = k % tableSize;
set.add (11);
set.add(49) ;

index| 0| 12| 3|4 |5|6|7|8]|09
value| 0 |11 0| 0| OO0 O0]O0]0O01{(0O

Collisions

collision: When hash function maps 2 values to same
index.

h(k) = k $ tableSize;
set.add (11);

set.add(49) ;
set.add(24) ;

index| 0| 12| 3|4 |5|6|7|8]|09
value| 0 |11 0| 0| O[O 0|0 049

Collisions

« collision: When hash function maps 2 values to same
index.
h(k) = k % tableSize;
set.add
set.add
set.add (
set.add (

index| 0| 12| 3|4 |5|6|7|8]|09
value| 0 |11/ 0|1 0 (24| 0| 0| 0| O (49

Collisions

« collision: When hash function maps 2 values to same
index.

h(k) = k % tableSize;
set.add(11)
set.add(49)
set.add (24)
set.add(7);
set.add (54)

Collisions

« collision: When hash function maps 2 values to same
index.
h(k) = k % tableSize;

set.add(11) ;

set.add(49) ;

set.add (24) ;

set.add (7) ;

set.add(54); // collides with 24!

index| 0| 12| 3|4 |5|6|7|8]|09
value| 0 |11 0| 0 |54 0| 01| 71| 0 (49

Collision resolution

Collision:

When two keys map to the same location in the
hash table

We try to avoid it, but number-of-keys exceeds
table size

So hash tables should support collision resolution
— |ldeas?

CSE373: Data Structures &

25 Algorithms

Probing

- probing: Resolving a collision by moving to
another index.

— linear probing: Moves to the next index.

set.add(11)
set.add (49)
set.add (24)
set.add (7) ;

(54)

set.add ; // collides with 24; must probe

1123|4567]8]09
11/ 0| 0|24|54| 0| 7|0 |49

— Is this a good approach?

. gevré?/tlon quadratic probing moves increasingly far

Linear Probing Example

If h (key) is already full,

— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull..

Example: insert 38, 19, 8, 109, 10

O o0 3 O O»n kB~ W N = O

~ | T~ | T~ | ~ |~ |~ | ~ | -

(U))
oo

~~

27

Linear Probing Example

If h (key) is already full,
— try (h(key) + 1
— try (h(key) + 2
— try (h(key) + 3)

% TableSize. Iffull,
% TableSize. If full,
% TableSize. If full...

-’

Example: insert 38, 19, 8, 109, 10

O o0 3 O O»n kB~ W N = O

~ | T~ | T~ | ~ |~ |~ | ~ | -

(U))
oo

U
\O

28

Linear Probing Example

If h (key) is already full,

— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull.

Example: insert 38, 19, 8, 109, 10

O o0 3 O O»n kB~ W N = O

~ | ~ | ~ | ~ |~ |~ -0

(U))
oo

U
\O

29

Linear Probing Example

If h (key) is already full,

— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) %

Example: insert 38, 19, 8, 109, 10

TableSize. If full...

O o0 3 O O»n kB~ W N = O

109

~ | T~ |~ | | | ~

38

19

30

Linear Probing Example

If h (key) is already full,

— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) %

Example: insert 38, 19, 8, 109, 10

TableSize. If full...

O o0 3 O O»n kB~ W N = O

109

10

~ | T~ | | -~ | -

38

19

31

CSE 373: Data Structures & Algorithms
Hash Tables (Day 2)

Riley Porter
Winter 2017

Winter 2017 CSE373: Data Structures & Algorithms

Course logistics

e HW2 due tonight, HW1 grades out soon,
out not in time for HW?2

e HW3 out now, due in two weeks on the
MIDTERM

 Midterm studying resources exist and are
posted, but more (and what to expect)
we’ll get into next week

33

Where we left off on Wednesday

 hash tables:

— a “magic” array that lets us do a find operation in
O(1)

— given a piece of data, use the hash function to find
where the data goes

* hash function:
— hashCode in Java, then map to the table size
— usually involves primes and mod the table size

e collision resolution:

— linear probing, just find the next empty spot
— other options we’ll explore today

34

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions
by trying a sequence of other positions in the table

Trying the next spot is called probing

— We just did linear probing
e ithprobewas (h(key) + i) % TableSize

— In general have some probe function £ and use
h(key) + £(i) % TableSize

Open addressing does poorly with high load factor A
— So want larger tables
— Too many probes means no more O(1)

35

Open Addressing Operations

insert finds an open table position using a probe
function

What about £ind?

— Must use same probe function to “retrace the trail” for
the data

— Unsuccessful search when reach empty position

What about delete?

— Must use “lazy” deletion. Why?
* Marker indicates “no data here, but don’t stop probing”

— Note: delete with chaining is plain-old list-remove

36

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)

PRI
LyeeiL LIS
Tends to produce uuuuugmmmu oyl I
L4
i AR
clusters, which lead to LS emeeY s
. = o llenli®
long probing sequences ugwwmwuumwuuuu e
. L el ‘ L .
* Called primary mwmwmuummuuumu o
: il)
clustering e uu&muuuuuuuuuu
. . . uL_}LJUU epe i)
e Saw this starting inour ~ ““'*® umuuéuuuuuuuuu
ojioj)el®) oL
example LI AL
L el o) 18
L umwummwwggéﬁému
o) 0@ L
S mmmmmmmwmmumwu
Ll

LI
Ly e e [R. Sedgewick]

Useful for Analysis: Load Factor

Definition: The load factor, A, of a hash table is

N < number of elements

) TableSize

A

CSE373: Data Structures &

38 Algorithms

Analysis of Linear Probing

Trivial fact: For any A < 1, linear probing will find an empty slot
— Itis “safe” in this sense: no infinite loop unless table is full

Non-trivial facts we won’t prove:

Average # of probes given A (in the limit as TableSize > x)
— Unsuccessful search:

1 (1)
—| 1+ 5
— Successful search: 2 (1 - /1)

| |

14—

27 (1-2)
(Intuition) This is pretty bad: need to leave sufficient empty
space in the table to get decent performance

39

In @ chart

* Linear-probing performance degrades rapidly as table gets full
— (Formula assumes “large table” but point remains)

Average # of Probes

Linear Probing Linear Probing
16.00 " 350.00
14.00 / 2 30000
. / g 250.00
10.00 / Y= 200.00
8.00 : . O . .
/ —Ilinear probing * 150.00 ——Ilinear probing
6.00 / not found) not found
4.00 ?60 100.00
/ - ——=|inear probing qh) 50.00 / = |inear probing
2.00 —_—————— found > ' ﬁ ! found
0.00 < 000
—~ 00 N N O O M O™ S 0 — O O 0™~ W N T N N o
OO0 4 N AN M s W WIS~ O = A N M < 1N O ™~ 0 O
OO0 000000 oo oo O 0O 000000 o oo
Load Factor Load Factor

40

Quadratic probing

 We can avoid primary clustering by changing the probe
function

(h(key) + £(1)) % TableSize

A common technique is quadratic probing:
f£f(i) = i?
— So probe sequence is:
* 0" probe: h(key) % TableSize
 1stprobe: (h(key) + 1) % TableSize
« 2"dprobe: (h(key) + 4) % TableSize
e 39probe: (h(key) + 9) % TableSize

* it"probe: (h(key) + i?) % TableSize

* Intuition: Probes quickly “leave the neighborhood”

41

Quadratic Probing Example

TableSize=10
Insert:

89

18

49

58

/79

O 0 3 O D b~ W N —= O

Quadratic Probing Example

O 0 3 O D b~ W N —= O

89

TableSize=10
Insert:

89

18

49

58

/79

43

Quadratic Probing Example

O 0 3 O D b~ W N —= O

18

89

TableSize=10
Insert:

89

18

49

58

/79

44

Quadratic Probing Example

O© 0 9 O »n B~ W N = O

49

18

89

TableSize=10
Insert:

89

18

49

58

/79

49%10=9,9 +i2% 10
49%10=9,9+(1*1)% 10
49%10=9,9+(1*1)%10=0

45

Quadratic Probing Example

O© 0 9 O »n B~ W N = O

49

58

18

89

TableSize=10
Insert:

89

18

49

58

/79

58 % 10 =3, 8 +i2% 10

589% 10=8,8+ (1 * 1) % 10
58%10=8,8+(1*1)%10=0
58 % 10 =8, 8 +i2% 10

589% 10=8, 8 + (2 *2) % 10
58%10=8,8+(2*2)%10=2

Quadratic Probing Example

O© 0 9 O »n B~ W N = O

49

58

79

18

89

TableSize=10
Insert:

89

18

49

58

/79

79%10=9,9+i2% 10
79%10=9,9+(1*1)% 10
79%10=9,9+(1*1)%10=0
79%10=9,9+i2% 10
79%10=9,9+ (2 *2) % 10
79%10=9,9+(2*2)%10=3

47

Another Quadratic Probing Example

A N A W=D

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 =5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 = 6)

47 (47 % 7 =5)

48

Another Quadratic Probing Example

A N A W=D

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 =5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 = 6)

47 (47 % 7 =5)

49

Another Quadratic Probing Example

A N A W=D

40

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 =5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 = 6)

47 (47 % 7 =5)

50

Another Quadratic Probing Example

A N A W=D

48

40

76

TableSize =7

Insert:

76
40
48
5

55
47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7="5)
(55% 7 = 6)
(47 % 7 = 5)

48%7=66+12%7
48%7=66+(1*1)%7
48%7=6,6+(1*1)%7=0

51

Another Quadratic Probing Example

A N A W=D

48

40

76

TableSize =7

Insert:

76
40
48
5

55
47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7="5)
(55% 7 = 6)
(47 % 7 = 5)

5%7=505+12%7
5%7=505+(1*1)%7
5%7=5,5+(1*1)%7=0
5%7=55+i2%7
5%7=505+(2%2)%7
5%7=5,5+(2%2)%7=2

52

Another Quadratic Probing Example

A N A W=D

48

55

40

76

TableSize =7

Insert:
76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5%7="5)
(55% 7 = 6)
(47 % 7 = 5)

55%7=6,6+i2%7
55%7=6,6+(1*1)%7
55%7=6,6+(1*1)%7=0
55%7=6,6+i2%7
55%7=6,6+(2%2)%7
55%7=6,6+(2%2)%7=3

Another Quadratic Probing Example

A N A W=D

48

55

40

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 =5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 = 6)

47 (47 % 7 =5)

47%7=55+12%7
47%7=55+(1*1)%7

47%7=5,5+i2%7
47%7=55+(3%3)%7

47%7=5,5+(1*1)%7=0 47%7=5,5+(3*3)%7=0

47%7=5,5+i2%7
47%7=55+(2%2)%7

47%7=5,5+2%7
47%7=55+(4%4)%7

47%7=5,5+(2%2)%7=2 47%7=5,5+(4*%4)%7=0

54

Another Quadratic Probing Example

TableSize =7
0 48
1 Insert:

76 (76 % 7 = 6)
2 5 40 (40 % 7 = 5)
3 55 48 (48 % 7 = 6)

5 (5%7="5)
4 55 (55 % 7 = 6)
5 40 47 (47 % 7 =5)
6 76

Doh!: Foralln, ((n*n) +5) % 7 is 0, 2, 5, or 6

* Excel shows takes “at least” 50 probes and a pattern

* Proof uses inductionand (n?+5) % 7 = ((n-7)%+5) % 7
* Infact, forallcand k, (n?+c) % k = ((n-k)?+c) % k

From Bad News to Good News

Bad news:

— Quadratic probing can cycle through the same full
indices, never terminating despite table not being full

Good news:

— If TableSize is prime and A < 7, then quadratic
probing will find an empty slot in at most TableSize/
2 probes

— So: If you keep A <% and TableSize is prime, no need
to detect cycles

— Optional
» Keyfact: ForprimeTand0 < i,j < T/2wherei = j,
(k + i%?) $ T = (k + j%) % T (i.e.,, noindex
repeat)

56

Clustering reconsidered

e Quadratic probing does not suffer from primary
clustering: no problem with keys initially
hashing to the same neighborhood

e Butit’s no help if keys initially hash to the same
index

— Called secondary clustering

e Can avoid secondary clustering with a probe
function that depends on the key: double
hashing...

57

Double hashing

|dea:

— Given two good hash functions h and g, it is very
unlikely that for some key, h (key) == g(key)

— So make the probe function £ (i) = i*g(key)

Probe sequence:

Oth probe: h(key) % TableSize

15t probe: (h(key) + g(key)) % TableSize
2"d probe: (h(key) + 2*g(key)) % TableSize
39 probe: (h(key) + 3*g(key)) % TableSize

o i""probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g (key) cannot be 0

58

Double-hashing analysis

* Intuition: Because each probe is “jumping” by g (key)
each time, we “leave the neighborhood” and “go
different places from other initial collisions”

e But we could still have a problem like in quadratic
probing where we are not “safe” (infinite loop despite
room in table)

— It is known that this cannot happen in at least one case:

* h(key) = key % p
* g(key) = q - (key % q)
*2<g<p

p and g are prime

59

O 0 3 O D b~ W N —= O

~ | T~ | T~ | T~ | T] - | Y~ |~]~ ~

Separate Chaining

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D b~ W N —= O

Separate Chaining

> 10

/

~ | T~ | T~ | Y~ | Y~ |~ | ~ |~~~

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D b~ W N —= O

Separate Chaining

> 10

/

~ | T~ | T~ | | Y~ | | ~

»22

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D b~ W N —= O

Separate Chaining

»10| /

»22| /

~ | | | ~

107 /

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D b~ W N —= O

Separate Chaining

> 10

/

~ | | | ~

»12

»22

107

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D b~ W N —= O

Separate Chaining

A 4

10| /

~ | | | ~

A 4

42

A 4

12

Chaining:
All keys that map to the same
table location are kept in a list

A 4

107/

A 4

22| /| (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

Separate Chaining Analysis

Reminder: The load factor, A, of a hash table is

N < number of elements

B TableSize

A

Under chaining, the average number of elements per bucket is A

So if some inserts are followed by random finds, then on average:

e Each “unsuccessful” £ind compares against 4 items

So we like to keep A fairly low (e.g., 1 or 1.5 or 2) for chaining

Fall 2013 66 CSE373: Data Structu.res &
Algorithms

Rehashing

As with array-based stacks/queues/lists, if table gets too
full, create a bigger table and copy everything

I”

With chaining, we get to decide what “too ful
— Keep load factor reasonable (e.g., < 1)?
— Consider average or max size of non-empty chains?

Mmeans

For open addressing, half-full is a good rule of thumb

New table size

— Twice-as-big is a good idea, except, uhm, that won’t be
prime!

— So go about twice-as-big

— Can have a list of prime numbers in your code since you
won’t grow more than 20-30 times

Rehashing

When the table gets too full, create a bigger table
(usually 2x as large) and hash all the items from the
original table into the new table.

 \When to rehash?
— Separate chaining: full (A = 1)
— Open addressing: half full (A = 0.5)
— When an insertion fails
— Some other threshold

* Cost of a single rehashing?

68

Rehashing Picture

« Starting with table of size 2, double
when load factor > 1.

Bl hashes
B rehashes

1 23 45 67 89 1011121314 15 161718 1920 212324 25

69

Amortized Analysis of Rehashing

» Cost of inserting n keys is < 3n

¢ suppose 2%+ 1 <n < 2k
— Hashes = n
— Rehashes =2+ 22+ .. +2k=2k+1_2
— Total =n + 2k*1 -2 < 3n

 Example
— n =33, Total = 33 + 64 —2 = 95 < 99

70

Terminology

We and the book use the terms
— “chaining” or “separate chaining”
— “open addressing”

Very confusingly,
— “open hashing” is a synonym for “chaining”
— “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better,
most trees in CS grow upside-down

&

Summary: Hashing

Hashing is one of the most important tools.

Hashing has many applications where operations are
imited to find, insert, and delete.

— But what is the cost of doing, e.g., findMin?
Can use:

— Separate chaining (easiest)

— Open addressing (memory conservation, no linked list
management)

Rehashing has good amortized complexity.

Also has a big data version to minimize disk
accesses: extendible hashing. (See book.)

72

Summary: Hash Tables

 Aim for constant-time (i.e., O(1)) £ind, insert,
and delete

— “On average” under some reasonable assumptions

* Ahash table is an array of some fixed size 0

client hash table library

collision? collision

[mmmes) |nt Emmmes) table-index EEmmmmmw)

resolution

TableSize -1

CSE373: Data Structures &

/3 Algorithms

