CSE 373: Data Structures and Algorithms More Asymptotic Analysis; More Heaps

Riley Porter Winter 2017

Course Logistics

- HW 1 posted. Due next Tuesday, January 17th at 11 pm.
 Dropbox not on catalyst, will be through the Canvas for the course.
- TA office hour rooms and times are all posted and finalized.
 Please go visit the TAs so they aren't lonely.
- Java Review Session materials from yesterday posted in the Announcements section of the website.

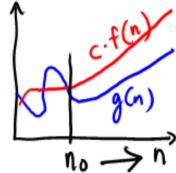
Review from last time (what did we learn?)

- Analyze algorithms without specific implementations through space and time (what we focused on).
- We only care about asymptotic runtimes, we want to know what will happen to the runtime proportionally as the size of input increases
- Big-O is an upper bound and you can prove that a runtime has a Big-O upper bound by computing two values: c and n_0

Review: Formally Big-O

Definition:

g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$



- To show g(n) is in O(f(n)), pick a c large enough to "cover the constant factors" and n₀ large enough to "cover the lower-order terms"
 - Example: Let $g(n) = 3n^2+17$ and $f(n) = n^2$ c=5 and $n_0=10$ is more than good enough
- This is "less than or equal to"
 - So $3n^2+17$ is also $O(n^5)$ and $O(2^n)$ etc.

Big-O: Common Names

```
O(1) constant (same as O(k) for constant k)
```

 $O(\log n)$ logarithmic

O(n) linear

 $O(n \log n)$ "n $\log n$ "

 $O(n^2)$ quadratic

 $O(n^3)$ cubic

 $O(n^k)$ polynomial (where is k is any constant: linear,

quadratic and cubic all fit here too.)

 $O(k^n)$ exponential (where k is any constant > 1)

Note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k>1". Example: a savings account accrues interest exponentially (k=1.01?).

More Asymptotic Notation

- Big-O Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$
- Big-Omega Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in Ω(f(n)) if there exist constants c and n_0 such that g(n) ≥ c f(n) for all $n ≥ n_0$
- Big-Theta Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to f(n)
 - Intersection of O(f(n)) and $\Omega(f(n))$ (use different c values)

A Note on Big-O Terms

- A common error is to say O(function) when you mean θ(function):
 - People often say Big-O to mean a tight bound
 - Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only conveys the upper-bound
 - Since f(n)=n is also O(n⁵), it's tempting to say "this algorithm is exactly O(n)"
 - Somewhat incomplete; instead say it is $\theta(n)$
 - That means that it is not, for example O(log n)

What We're Analyzing

- The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Example: True statements about binary-search algorithm
 - Common: $\theta(\log n)$ running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common (but very good to know): the find-insorted array problem is $\Omega(\log n)$ in the worst-case
 - No algorithm can do better (without parallelism)

Intuition / Math on O(logN)

- If you're dividing your input in half (or any other constant) each iteration of an algorithm, that's O(logN).
- Binary Search Example:

If you divide your input in half each time and discard half the values, to figure out the worst-case runtime you need to figure out how many "halves" you have in your input. So you're solving:

$$N / 2^{x} = 1$$

where N is size of input, X is "number of halves", because 1 is the desired number of elements you're trying to get to.

$$log(2^{x}) = X*log(2) = log(N)$$

 $X = log(N) / log(2)$
 $X = log_{2}(N)$

Other things to analyze

- Remember we can often use space to gain time
- Average case
 - Sometimes only if you assume something about the probability distribution of inputs
 - Usually the way we think about Hashing
 - Will discuss in two weeks
 - Sometimes uses randomization in the algorithm
 - Will see an example with sorting
 - Sometimes an amortized guarantee
 - Average time over any sequence of operations
 - Will discuss next week

Usually asymptotic is valuable

- Asymptotic complexity focuses on behavior for large n and is independent of any computer / coding trick
- But you can "abuse" it to be misled about trade-offs
- Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the "cross-over" point is around $5 * 10^{17}$
 - So if you have input size less than 2^{58} , prefer $n^{1/10}$
- For *small n*, an algorithm with worse asymptotic complexity might be faster
 - Here the constant factors can matter, if you care about performance for small n

Summary of Asymptotic Analysis

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper)

 The most common thing we will do is give an O upper bound to the worst-case running time of an algorithm.

Winter 2017 12

Let's use our new skills!

Here's a picture of a kitten as a segue to analyzing an ADT

Winter 2017 13

Analysis of Priority Queue ADT

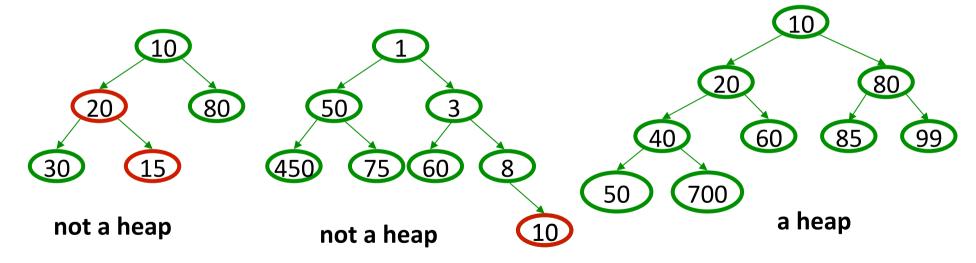
Let's compare some options for implementing Priority Queues. All runtimes worst-case, but assume arrays have room for new elements. We'll look at the binary search tree operations and runtimes more on Friday.

data structure	insert		deleteMin
unsorted array	add at end	<i>O</i> (1)	search O(n)
unsorted linked list	add at front	<i>O</i> (1)	search $O(n)$
sorted array	search / shift	<i>O</i> (<i>n</i>)	stored in reverse O(1)
sorted linked list	put in right pla	ce <i>O</i> (<i>n</i>)	remove at front O(1)
binary search tree	put in right pla	ce <i>O</i> (<i>n</i>)	leftmost O(n)
heaps	???		???

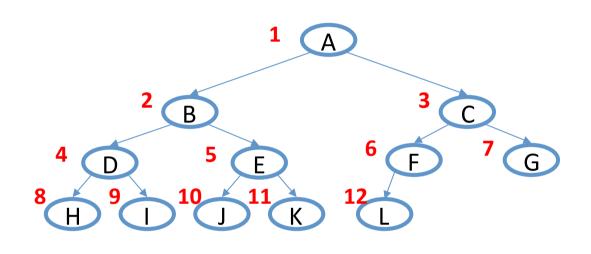
Review of last time: Heaps

Heaps follow the following two properties:

- Structure property: A complete binary tree
- Heap order property: The priority of the children is always a greater value than the parents (greater value means less priority / less importance)



Array Representation of Heaps (or any tree structure)



Starting at node i

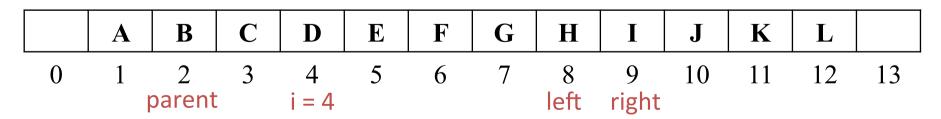
left child: i * 2

right child: i*2+1

parent: i/2

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:



Judging the array implementation

Positives:

- Non-data space is minimized: just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so n-1 wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index size

Negatives:

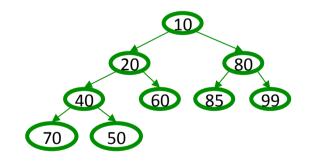
 Same might-by-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: "this is how people do it"

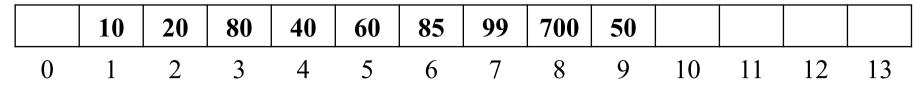
Pseudocode: insert

```
void insert(int val) {
  if(size == arr.length-1)
    resize();
  size++;
  i=percolateUp(size,val);
  arr[i] = val;
}
```

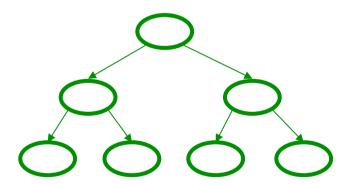
```
int percolateUp(int hole, int val) {
  while(hole > 1 &&
      val < arr[hole/2])
    arr[hole] = arr[hole/2];
    hole = hole / 2;
  }
  return hole;
}</pre>
```

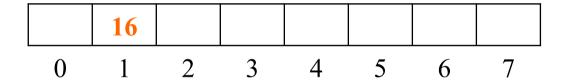


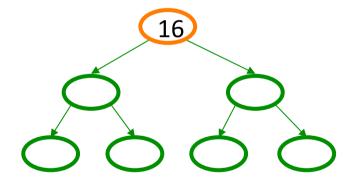
This pseudocode uses ints. Since not all data types are comparable, you could instead have data nodes with priorities.

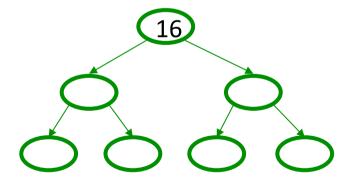


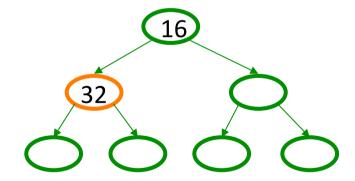
CSE373: Data Structures & Algorithms

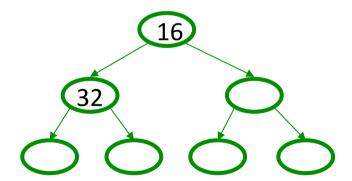


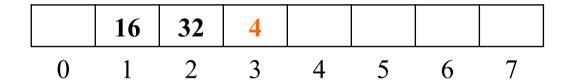


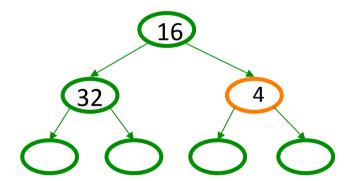


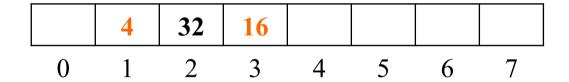


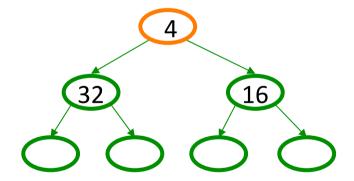




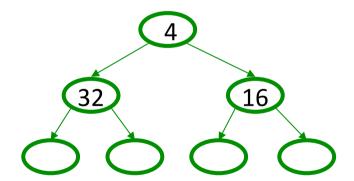


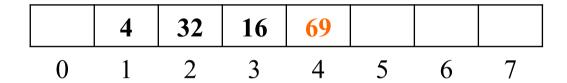


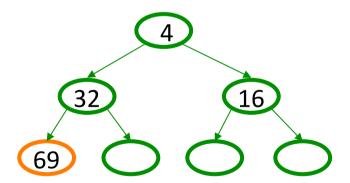




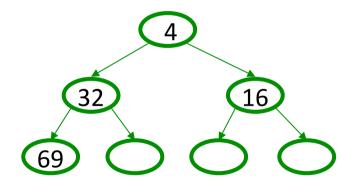
	4	32	16				
0	1	2	3	4	5	6	7



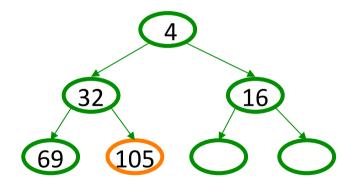




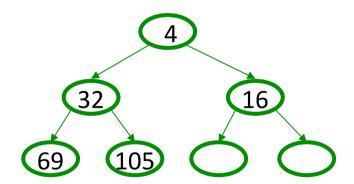
	4	32	16	69			
0	1	2	3	4	5	6	7



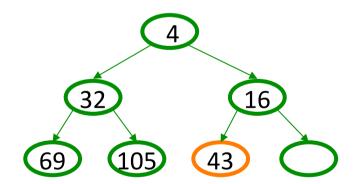
	4	32	16	69	105		
0	1	2	3	4	5	6	7



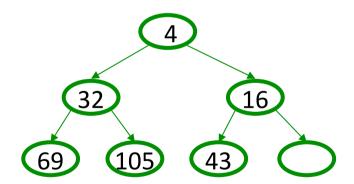
	4	32	16	69	105		
0	1	2	3	4	5	6	7



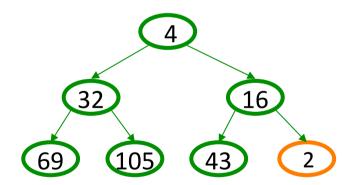
	4	32	16	69	105	43	
0	1	2	3	4	5	6	7



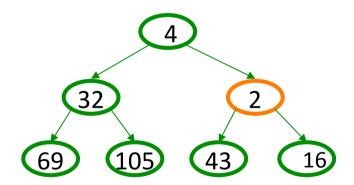
	4	32	16	69	105	43	
0	1	2	3	4	5	6	7



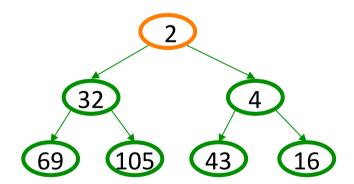
	4	32	16	69	105	43	2
0	1	2	3	4	5	6	7



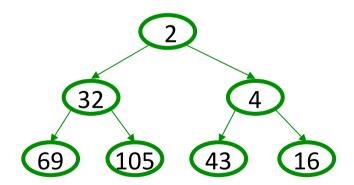
	4	32	2	69	105	43	16
0	1	2	3	4	5	6	7



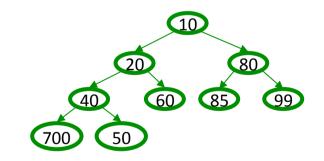
	2	32	4	69	105	43	16
0	1	2	3	4	5	6	7

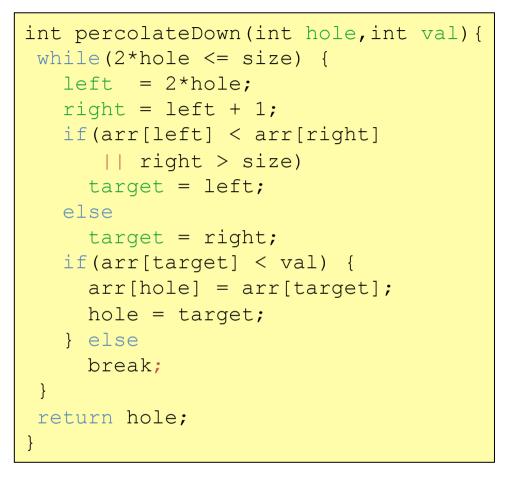


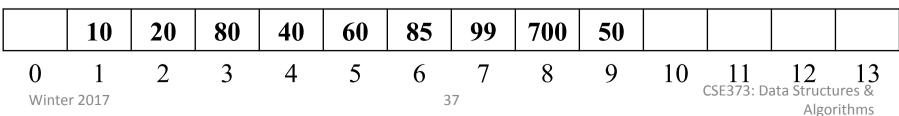
	2	32	4	69	105	43	16
0	1	2	3	4	5	6	7



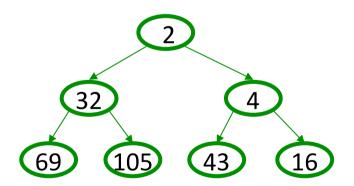
Pseudocode: deleteMin



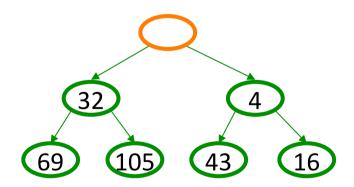




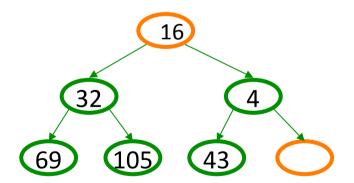
	2	32	4	69	105	43	16
0	1	2	3	4	5	6	7

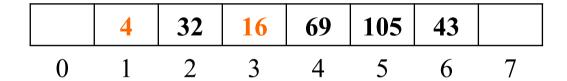


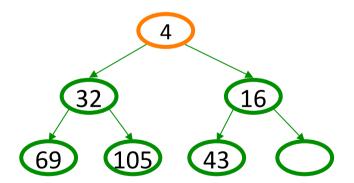
		32	4	69	105	43	16
0	1	2	3	4	5	6	7



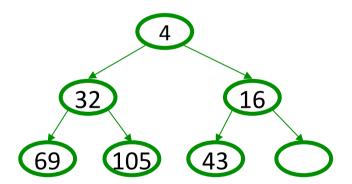
	16	32	4	69	105	43	
0	1	2	3	4	5	6	7







	4	32	16	69	105	43	
0	1	2	3	4	5	6	7



DeleteMin: Run Time Analysis

- We will percolate down at most (height of heap) times
 - So run time is O(height of heap)
- A heap is a complete binary tree
- Height of a complete binary tree of n nodes?
 - height = $\lfloor \log_2(n) \rfloor$
- Run time of **deleteMin** is $O(\log n)$

Insert: Run Time Analysis

- Same as deleteMin worst-case time proportional to tree height O(log n)
- deleteMin needs the "last used" completetree position and insert needs the "next to use" complete-tree position
 - If "keep a reference to there" then insert and deleteMin have to adjust that reference: O(log n) in worst case
 - Could calculate how to find it in $O(\log n)$ from the root given the size of the heap

Other operations

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value. Remember lower priority value is *better* (higher in tree).
 - Change priority and percolate up
- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value.
 - Change priority and percolate down
- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue.
 - Percolate up to top and removeMin
- **buildHeap**: given a list of elements, construct a heap with those values.
 - Floyd's Method will be seen on Friday

Revisit: Analysis of Priority Queue ADT

Let's compare some options for implementing Priority Queues. All runtimes worst-case, but assume arrays have room for new elements. We'll look at the binary search tree operations and runtimes more on Friday.

data structure	insert		deleteMin
unsorted array	add at end	<i>O</i> (1)	search O(n)
unsorted linked list	add at front	<i>O</i> (1)	search $O(n)$
sorted array	search / shift	<i>O</i> (<i>n</i>)	stored in reverse O(1)
sorted linked list	put in right pla	ce <i>O</i> (<i>n</i>)	remove at front O(1)
binary search tree	put in right plac	ce O(n)	leftmost O(n)
heaps	O(logn)		O(logn)

Today's Takeaways

 Understand Big-O, Big-theta, and Big-Omega definitions and how to find them for a given runtime.

 Understand how Heap operations are implemented with the array representation and be able to analyze their runtimes.