Winter 2017

CSE 373: Data Structures and Algorithms

Lecture 1: Introduction; ADTs; Stacks/Queues

Riley Porter
Winter 2017

CSE373: Data Structures and Algorithms

Welcomel!

This course is about fundamental data structures
and algorithms for organizing and processing
information

— “Classic” data structures / algorithms and how to analyze
rigorously their efficiency and when to use them

— Queues, dictionaries, graphs, sorting, etc.

Today in class:
* |ntroductions and course mechanics
* What this course is about
e Start abstract data types (ADTs), stacks, and queues

Overloading

Goto:
Overload Form link:

https://catalyst.uw.edu/webqg/survey/cseadv/321439
or

http://tinyurl.com/hz9sxzd

Code Word: Given in Lecture

Do this by 1 hour after this lecture!

Winter 2017 CSE373: Data Structures and Algorithms

http://tinyurl.com/hz9sxzd
http://tinyurl.com/hz9sxzd

Course staff

Instructor: Riley Porter, CSE 450, rileymp2@cs.washington.edu

TA: Zelina Chen : zelinac@cs.washington.edu

TA: Paul Curry : paulmc@cs.washington.edu

TA: Josh Curtis : curtijd@cs.washington.edu

TA: Chloe Lathe : [athec@cs.washington.edu

TA: Trung Ly : trungly@cs.washington.edu

TA: Matthew Rockett : rockettm@cs.washington.edu
TA: Kyle Thayer : kthayer@cs.washington.edu

TA: Raquel Van Hofwegen : ragvh@cs.washington.edu
TA: Pascale Wallace Patterson : pattersp@cs.washington.edu
TA: Rebecca Yuen : rebyuen@cs.washington.edu

TA: Hunter Zahn : hzahn93 @cs.washington.edu

Winter 2017 CSE373: Data Structures and Algorithms

mailto:hzahn93@cs.washington.edu
mailto:hzahn93@cs.washington.edu

Concise to-do list

In next 24-48 hours:
* Take homework O (worth O points) as Catalyst quiz
e Read/skim Chapters 1 and 3 of Weiss book

— Relevant to Homework 1, due next week
* Set up your Java environment for Homework 1

* Check out the Course Website and read all the
course policies:

https://courses.cs.washington.edu/courses/
cse373/17wi

Winter 2017 CSE373: Data Structures and Algorithms

https://courses.cs.washington.edu/courses/cse373/17wi

Communication

* Course email list: cse373 wil7Qu.washington.edu
— Students and staff already subscribed
— Fairly low traffic

* Course staff: cse373-staff@cs.washington.edu plus
individual emails

e Discussion board
— For appropriate discussions; TAs will monitor
— Encouraged, but won’t use for important announcements

 Anonymous feedback link
— For good and bad: if you don’t tell me, | don’t know

Winter 2017 CSE373: Data Structures and Algorithms

Course meetings

* Lectures
— Materials posted on the website
— Ask questions, focus on key ideas
— Not recorded

e Sections on Thursdays
— Programming practice, homework prep
— Math review and example exam problems

— Would be a really bad idea not to go, won’t
always post all materials on the website

Office Hours

e Riley: Tuesday 1:30 - 3:20pm in CSE 450
— Use them: please visit me... | have candy...

— |ldeally not just for homework questions (but that’s
OK too)

 TA’s: To be determined — will be posted on the
website today/tomorrow

Course materials

=== » All lecture and section materials will be posted

= == — Butthey are visual aids, not always a complete
description!

— If you have to miss, find out what you missed

— Good read, but only responsible for lecture/hw topics
— 31 edition improves on 2"9, but we’ll support the 2

@ Textbook: Weiss 3™ Edition in Java

Core Java

. "

* A good Java reference of your choosing
— Google is only so helpful

Winter 2017 CSE373: Data Structures and Algorithms 9

Computing

* College of Arts & Sciences Instructional Computing
Lab

— http://depts.washington.edu/aslab/
« Communications building

— Or your own machine

* Will use Java 8 for the programming assignments

* Eclipse is recommended programming environment

Winter 2017 CSE373: Data Structures and Algorithms 10

http://depts.washington.edu/aslab/
http://depts.washington.edu/aslab/

Course Work

* ~6 homework assingments (50%)

— Most involve programming, but also written
guestions

— Higher-level concepts than “just code it up”

— First programming assignment released soon and due
next week

 Midterm (20%): TBD. Will announce more about
this in the coming week.

* Final (30%): Tuesday, March 14t" 2:30-4:20

Collaboration and Academic Integrity

* Read the course policy very carefully

— Explains quite clearly how you can and cannot get/
provide help on homework and projects

* Always explain any unconventional action on your
part

— When it happens, when you submit, not when asked

Honest work is the most important feature of a
university

Academic Honesty Details

You are expected to do your own work
— Exceptions (group work), if any, will be clearly announced

Sharing solutions, doing work for, or accepting work
from others is cheating

Referring to solutions from this or other courses
from previous quarters is cheating

But you can learn from each other: see the policy

Moar Academic Honesty

You spend at least 30 minutes on each and every problem (or programming
assignment) alone, before discussing it with others.

Cooperation is limited to group discussion and brainstorming. No written or
electronic material may be exchanged or leave the brainstorming session.

You write up each and every problem in your own writing, using your own
words, and fully understanding your solution (similarly you must write code on
your own).

You identify each person that you collaborated with at the top of your written
homework or in your README file.

What 373 is about

 Deeply understand the basic structures used in all software
— Understand the data structures and their trade-offs
— Rigorously analyze the algorithms that use them (math!)
— Learn how to pick “the right thing for the job”

— More thorough and rigorous take on topics introduced in
CSE143 (plus more new topics)

e Practice design, analysis, and implementation

— The elegant interplay of “theory” and “engineering” at the core of
computer science

* More programming experience (as a way to learn)

Winter 2017 CSE373: Data Structures and Algorithms

15

Goals

* Be able to make good design choices as a developer,
project manager, etc.
— Reason in terms of the general abstractions that come up in
all non-trivial software (and many non-software) systems
* Be able to justify and communicate your design
decisions

Dan Grossman’s take:

— Key abstractions used almost every day in just about anything
related to computing and software

— It is a vocabulary you are likely to internalize permanently

Winter 2017 CSE373: Data Structures and Algorithms 16

In CSE 143 (Assumed Background)

 Fundamentals of computer science and object
oriented programming

— Variables, conditionals, loops, methods,
fundamentals of defining classes and inheritance,
arrays, single linked lists, simple binary trees,
recursion, some sorting and searching algorithms,
basic algorithm analysis (e.g., O(n) vs O(n?) and
similar things)

— What other data structures were in 1437

143 vs 373

e 143: Showed you how to use data structures
(be the Client vs the Implementor)

e 373:

— Provide you with the tools to understand when
and why one would use certain data structures/
algorithms over others

 And to be able to implement your own!

— problem solving and thinking critically

Topics Outline

Introduction to Algorithm Analysis
Lists, Stacks, Queues

Trees, Hashing, Dictionaries
Heaps, Priority Queues

Sorting

Disjoint Sets

Graph Algorithms

May have time for other brief exposure to topics, maybe
parallelism, technical interview questions, dynamic programming

Terminology

— Mathematical description of a “thing” with set of operations

— A high level, language-independent description of a step-by-
step process

— A specific organization of data and family of algorithms for
implementing an ADT

of a data structure
— A specific implementation in a specific language

Data structures

(Often highly non-obvious) ways to organize
information to enable efficient computation over
that information

A data structure supports certain operations, each
with a:

— Meaning: what does the operation do/return
— Performance: how efficient is the operation

Examples:
— List with operations insert and delete
— Stack with operations push and pop

Trade-offs

A data structure strives to provide many useful, efficient
operations

But there are unavoidable trade-offs:

— Time vs. space
— One operation more efficient if another less efficient

— Generality vs. simplicity vs. performance

We ask ourselves questions like:
— Does this support the operations | need efficiently?
— Will it be easy to use, implement, and debug?

— What assumptions am | making about how my software will be
used? (E.g., more lookups or more inserts?)

Array vs Linked List

Array: List:

May waste unneeded space

oF run out of space — Always just enough space

Space per element excellent — Slightly more space per
Constant-time access to kth element
element

— No constant-time access to

For operation
P kth element

insertAtPosition, must shift
all later elements — For operation

insertAtPosition must
traverse all earlier elements

ADT vs. Data Structure vs. Implementation

“Real life” Example (not perfect)

ADT: Automobile

— Operations: Accelerate, decelerate, etc...

Data Structure: Type of automobile
— Car, Motorcycle, Truck, etc...

Implementation (of Car):

— 2009 Honda Civic, 2001 Subaru Outback, ...

Winter 2017 CSE373: Data Structures and Algorithms

24

Example: Stacks

 The Stack ADT supports operations:
— isEmpty: have there been same number of pops as pushes
— push: takes an item

— pop: raises an error if empty, else returns most-recently pushed
item not yet returned by a pop

— ... (possibly more operations)

e A Stack data structure could use a linked-list or an array or
something else, and associated algorithms for the operations

e Oneimplementationisinthe library java.util.Stack

Winter 2017 CSE373: Data Structures and Algorithms

25

The Stack ADT
Operations: \ /

create
destroy —
push
pop

top

is empty

Can also be implemented with an array or a linked list
— This is Homework 1 (released soon, due next week)
— Type of elements is irrelevant

Why Stack ADT is useful

e |t arises all the time in programming (e.g., see Weiss 3.6.3)
— Recursive function calls
— Balancing symbols (parentheses)
— Evaluating postfix notation: 34 +5 *
— Clever: Infix ((3+4) * 5) to postfix conversion (see text)

 We can code up a reusable library

 We can communicate in high-level terms
— “Use a stack and push numbers, popping for operators...”
— Rather than, “create a linked list and add a node when...”

Winter 2017 CSE373: Data Structures and Algorithms

27

 Operations
create
destroy
enqueue
dequeue
is empty

The Queue ADT

dequeue

A e—— BCDEF

|

Front

e Just like a stack except:
— Stack: LIFO (last-in-first-out)
— Queue: FIFO (first-in-first-out)

e Just as useful and ubiquitous

Winter 2017

CSE373: Data Structures and Algorithms

|

Back

engueue
<

G

28

Circular Array Queue Data Structure

Q O

size-1

bic|d]|e

f

'ﬂontx backI

// Basic idea only!
enqueue (x) {
Q[back] = x;

back = (back + 1) % size
}
// Basic idea only!
dequeue () {
X = Q[front];
front = (front + 1) % size;

X,

Considerations:

What if queue is empty?
— Enqueue?
— Dequeue?
What if array is full?
How to test for empty?

What is the complexity of
the operations?

Can you find the kt
element in the queue?

Linked List Queue Data Structure

b

C

d

e

f

f

front

T
back

// Basic idea only!

enqueue (x) {

back.next = new Node (x) ;
back = back.next;

}

// Basic idea only!

dequeue () {
x = front.item;

front = front.next;

X,

}

Winter 2017

Considerations:

What if queue is empty?
— Enqueue?
— Dequeue?

Can list be full?

How to test for empty?

What is the complexity of
the operations?

Can you find the kth
element in the queue?

CSE373: Data Structures and Algorithms 30

Data Structure Analysis Practice

For each of the following, pick the best Data Structure

(Stack, Queue, either, or neither) and Implementation

(Array, Linked List, either, or neither):

* Maintain a collection of customers at a store with a
relatively constant stream of customers at all times

* Keep track of a ToDo list

* Maintain a sorted student directory

* Manage the history of webpages visited to be used
by the “back” button

* Store data and access the kth element often

Pseudocode

Describe an algorithm in the steps necessary, write the
shape of the code but ignore specific syntax.

Algorithm: Count all elements in a list greater than x

Pseudocode:

int counter // keeps track of number > x

while 1list has more elements {
increment counter 1f current element is > than x

move to next element of list

Pseudocode Example 2

Algorithm: Given a list of names in the format “firstName

lastName”, make a Map of all first names as keys with sets of last
names as their values

Pseudocode:

create the empty result map

while list has more names to process {
firstName i1s name split up until space
lastName 1s name split from space to the end
1f firstName not 1n the map yet {

put firstName in map as a key with an empty
set as the value

}
add lastName to the set for the first name
move to the next name in the 1list

Winter 2017 CSE373: Data Structures and Algorithms

33

Review Java Programming

* Course content from most recent 143 offerings:
* Stuart's Calendar (includes videos of lectures)
e Zorah's Calendar
* Adam's Content

* Adam’s 14X Unofficial Style Guide although, we will
be less strict than the 14X courses here

* Practice-It to practice sample problems from 14X

Winter 2017 CSE373: Data Structures and Algorithms

34

https://courses.cs.washington.edu/courses/cse143/16wi/calendar.shtml
https://courses.cs.washington.edu/courses/cse143/16sp/lectures.shtml
https://courses.cs.washington.edu/courses/cse143/16au/
https://courses.cs.washington.edu/courses/cse143/16au/style/
https://practiceit.cs.washington.edu/

