CSE 373: Data Structures & Algorithms

Introduction to Graphs

Riley Porter
Winter 2017

CSE373: Data Structures & Algorithms

Announcements

e Midterms done!

— Wow! Nicely done everyone.
* Average was ~68/80, which is ~85%
e Standard Dev: 7 points
* Not an easy test, you all rocked it! Congrats!

— Handed back in section on Thursday
— Scores on Canvas after lecture

* HW4 out tonight -> Graphs

Graphs

 Agraphisaformalism for representing relationships
among items. One way to write graphs:

* Agraph G = (V,E) Luke
— A set of vertices, also known as nodes Q
V = {v,,v,,.., V. }
— A set of edges V= , Luke}
E = {e1/e2/---rem} E = {(Luke,) ,
* Each edge e, is a pair of vertices (/)
(v:.l y Vi) (’) }

* An edge “connects” the vertices

* Graphs can be directed or undirected

CSE373: Data Structures &
Algorithms

Are Graphs An ADT?

Can think of graphs as an ADT with operations like
isEdge((v,,v,)), addVertex(v

new) ’

But it is unclear what the “standard operations” are

Instead we tend to develop algorithms over graphs and then use
data structures that are efficient for those algorithms

Many important problems can be solved by:
1. Formulating them in terms of graphs
2. Applying a standard graph algorithm

To make the formulation easy and standard, we have a lot of
standard terminology about graphs

Undirected Graphs

* |nundirected graphs, edges have no specific direction
— Edges are always “two-way”
D

O

A

e Thus, (u,v) € E implies (v,u) € E
— Only one of these edges needs to be in the set
— The other is implicit, so normalize how you check for it

* Degree of a vertex: number of edges containing that vertex
— Put another way: the number of adjacent vertices

CSE373: Data Structures &

> Algorithms

Directed Graphs

In directed graphs (sometimes called digraphs),
edges have a direction

A C
/
2 edges here B

Thus, (u, v) E E does not imply (v,u) € E.
e let (u,v) € E meanu—-v
e (Call uthe source and v the destination
In-degree of a vertex: number of in-bound edges,

i.e., edges where the vertex is the destination

Out-degree of a vertex: number of out-bound edges

i.e., edges where the vertex is the source

CSE373: Data Structures &

© Algorithms

Self-Edges, Connectedness

 Aself-edge a.k.a. aloop is an edge of the form (u,u)

— Depending on the use/algorithm, a graph may have:

* No self edges
* Some self edges
» All self edges (often therefore implicit, but we will be explicit)

* A node can have a degree / in-degree / out-degree of
Zero

* A graph does not have to be connected
— Even if every node has non-zero degree

CSE373: Data Structures &
Algorithms

More Notation
A C
ForagraphG = (V,E)

* |V| is the number of vertices

e |E| is the number of edges (assuming no self loops)
— Minimum? 0
— Maximum for directed? |V * (|V|-1) € O(|V]?)
— Maximum for undirected? (| V| * (|VI-1))/2 € O(|V]?)

V = {A, B, C, D}

* If (u,v) € E E = {(C, B),
— Then wvis a neighbor of u, i.e., vis adjacent tou (A, B),

— Order matters for directed edges (B, A)
* uisnotadjacenttowv unless (v,u) € E (C, D)}

CSE373: Data Structures &
Algorithms

Weighted Graphs

* |n a weighed graph, each edge has a weight a.k.a. cost
— Typically numeric (most examples use ints)
— Orthogonal to whether graph is directed
— Some graphs allow negative weights; many do not

Clinton 20
Mukilteo
Kingston Q\&O Edmonds

Bainbridge 35 Seqttle

Bremerton

CSE373: Data Structures &
Algorithms

Paths and Cycles

 Apathisalist of vertices [v,,v,,..,v.] suchthat (v, , v, ,)E
E forall0 = 1 < n. Say “apathfrom v,tov~

* Acycleis a path that begins and ends at the same node (v, == v_)

Chicago
Seattle

San Francisco

Dallas

. [Seattle, Chicago, Dallas]
Cycle: [Seattle, Salt Lake City, Dallas, San Francisco, Seattle]
10

CSE373: Data Structures &
Algorithms

Path Length and Cost

* Path length: Number of edges in a path
* Path cost: Sum of weights of edges in a path

Example:
P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Chicago

Seattle

length(P) =5

‘ Salt Lake City t(P) = 11.5
cost(P)=11.

San Francisco Dallas

11 CSE373: Data Structures &

Algorithms

Simple Paths and Cycles

A simple path repeats no vertices, except the first might be the
last

[Seattle, Salt Lake City, , Dallas]
[Seattle, Salt Lake City, , Dallas, Seattle]

Recall, a cycle is a path that ends where it begins
[Seattle, Salt Lake City, , Dallas, Seattle]

[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

A simple cycle is a cycle and a simple path
[Seattle, Salt Lake City, , Dallas, Seattle]

CSE373: Data Structures &
12 ;
Algorithms

Paths and Cycles in Directed Graphs

Example:

O

|s there a path from A to D?

Does the graph contain any cycles?

CSE373: Data Structures &

13 Algorithms

Paths and Cycles in Directed Graphs

Example:

O

|s there a path from Ato D? No

Does the graph contain any cycles? No

14

CSE373: Data Structures &
Algorithms

Paths and Cycles in Directed Graphs

Example:

|s there a path from A to D?

Does the graph contain any cycles?

CSE373: Data Structures &

= Algorithms

Paths and Cycles in Directed Graphs

Example:

Is there a path from Ato D? VYes

Does the graph contain any cycles? No

16

CSE373: Data Structures &
Algorithms

Paths and Cycles in Directed Graphs

Example:

|s there a path from A to D?

Does the graph contain any cycles?

CSE373: Data Structures &

v Algorithms

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D? Yes

Does the graph contain any cycles? Yes

18

CSE373: Data Structures &
Algorithms

Undirected-Graph Connectivity

* Anundirected graph is connected if for all
pairs of vertices u, v, there exists a path fromutowv

"B /0\0
o ©
® |
Connected graph Disconnected graph

 An undirected graph is complete, a.k.a. fully connected
if for all pairs of vertices u, v, there exists an edge from
utowv

plus self edges

CSE373: Data Structures &

9 Algorithms

Directed-Graph Connectivity

A directed graph is strongly connected if
there is a path from every vertex to every
other vertex

A directed graph is weakly connected if
there is a path from every vertex to every
other vertex ignoring direction of edges

A complete a.k.a. fully connected directed
graph has an edge from every vertex to
every other vertex

20

plus self edges

CSE373: Data Structures &
Algorithms

Trees as Graphs

When talking about Example:
graphs, (D) (k)
we say a tree is a graph
that is:
— Acyclic (no cycles)
— Connected

So all trees are graphs,
but not all graphs are

trees
& G

OmOm O

Rooted Trees

* We are more accustomed to rooted trees where:
— We identify a unique root
— We think of edges as directed: parent to children

* Given a graph that is a tree, picking a root gives a
unique rooted tree

B (A)
redrawn

® =) @ ©

G ® ©® ¢

@/@b © @

CSE373: Data Structures &
22 ;
Algorithms

Rooted Trees

* We are more accustomed to rooted trees where:
— We identify a unique root
— We think of edges as directed: parent to children

* Given a graph that is a tree, picking a root gives a
unique rooted tree

®

®
B redrawp ® (
@g — ®

G
6 o © ¢

CSE373: Data Structures &
23 .
Algorithms

Directed Acyclic Graphs (DAGs)

e ADAG is a directed graph with no (directed)
cycles

— Every rooted directed tree is a DAG
— But not every DAG is a rooted directed tree

»
»

— Not every directed graph is acyclic

Density / Sparsity

Recall: In an undirected graph, 0 < |E| < [V/|?
Recall: In a directed graph: 0 < [E| < |V/]?
So for any graph, O(|E[+|V[?)is O(|V]?)

Because |E| is often much smaller than its

maximum size, we do not always approximate |E|

as O(|V]?)

— This is a correct upper bound, it just is often not tight

— If itis tight, i.e., [E| is O(|V]?) we say the graph is
dense

— If |E| is O(|V|) we say the graph is sparse

CSE373: Data Structures &

25 Algorithms

How do we implement this?

* The “best” implementation can depend on:
— Properties of the graph (e.g., dense vs sparse)

— The common queries (e.g., “is (u,v) an edge?” vs
“what are the neighbors of node u?”)

 We'll discuss the two standard graph
representations
— Adjacency Matrix and Adjacency List
— Different trade-offs, particularly time versus space

CSE373: Data Structures &

26 Algorithms

Adjacency Matrix

e Assign each vertex/node a number from Oto |V|-1
e A |V]| x |V] matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

— If Mis the matrix, thenM[u] [v] being true means thereis an
edge fromutowv

o Al F T | F F

A ¢ B| T F | F F
B C| F T F T

D| F F F F

CSE373: Data Structures &
27 .
Algorithms

Adjacency Matrix Properties
A B C D

* Running time to:

— Get a vertex’s out-edges: O(IVI) A | F T F F

— Get a vertex’s in-edges: O(IV])

. . . T F F F
— Decide if some edge exists: O(1)

— Insert an edge: O(1) cl F T F T
— Delete an edge: 0(1)

* Space requirements:
— |V|? bits

* Better for sparse or dense graphs?
— Better for dense graphs

CSE373: Data Structures &

28 Algorithms

Adjacency Matrix Properties

 How will the adjacency matrix vary for an undirected

graph?

— Undirected will be symmetric around the diagonal

* How can we adapt the representation for weighted

graphs?

— Instead of a Boolean, store a number in each cell

— Need some value to represent ‘not an edge’

* In some situations, O or -1 works A
D
O B
A
C
C

B

4

CSE373: Data Structures & Algoritlln?s

B C D
-1 7 -1 -1
7 1| 4 -1
-1 4 -1 2
-1 -1 2 -1

Adjacency List

e Assign each node a numberfromOto |V]|-1

* An array of length | V| in which each entry stores a
list of all adjacent vertices (e.g., linked list)

D
A "B/
A C
B A/
B
C "D Bl/
D /

CSE373: Data Structures &

30 Algorithms

Adjacency List Propertie§

v
>
SN~

* Running time to:

A 4
O
A 4

— Get all of a vertex’s out-edges: C

O(d) where d is out-degree of vertex

D /

— Get all of a vertex’s in-edges:

O(|E| + |V]|) (but could keep a second adjacency list for this!)
— Decide if some edge exists:

O(d) where d is out-degree of source
— Insert an edge: O(1) (unless you need to check if it’s there)
— Delete an edge: O(d) where d is out-degree of source

* Space requirements:
— O(|VI[+]E[)

* Better for dense or sparse graphs?

— Better fOl" Spa rse gra phs CSE373: Data Structures &

31 Algorithms

Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected
graphs
* Matrix: Can save roughly 2x space

— But may slow down operations in languages with “proper” 2D arrays
(not Java, which has only arrays of arrays)

— How would you “get all neighbors”?

* Lists: Each edge in two lists to support efficient “get all

neighbors A B C D

Example: A "B |/

A| F
D B " A " C
Bl T F
C
cl F | 1T |F C 101 718
B

D| F F T F b €1/

Applications

* What could we use a graph to represent?
ALL THE
THINGS!

—5

CSE373: Data Structures & Algorithms

33

Some Applications as Graphs

For each of the following examples:
— what are the vertices and what are the edges?
— would you use directed edges? Would they have self-edges?
— Are there O-degree nodes? Is it strongly or weakly connected?
— Does it have weights? Do negative weights make sense?
— Does it have cycles? Is it a DAG?

* Web pages with links

* Facebook friends

 Methods in a program that call each other
 Road maps (e.g., Google maps)

e Airline routes

* Family trees

* Course pre-requisites

* Political donations to candidates

CSE373: Data Structures & Algorithms

34

Next...

Okay, we can represent graphs

Now let’s implement some useful and non-trivial
algorithms

* Topological sort: Given a DAG, order all the vertices so
that every vertex comes before all of its neighbors

* Shortest paths: Find the shortest or lowest-cost path
fromxtoy

— Related: Determine if there even is such a path

CSE373: Data Structures &

3 Algorithms

