CSE 373: Data Structures & Algorithms
Disjoint Sets & Union-Find

Riley Porter
Winter 2017

CSE373: Data Structures & Algorithms

Course Logistics

Hashing topic summary out now (thanks Matthew!)

HW3 still out. Some changes to clarify based on
common confusion popping up:

— WordInfo objects now have a hashCode()

— some clarification in the Mutability paragraph in
implementation notes

— rehashing pseudocode on the topic summary AND in
section tomorrow

Midterm a week from Friday, we’ll do review in lecture
next week

Review: Abstractions from Monday

public class ToDoPQ {
private ToDoltem[] heap;

private int size; What could go wrong

vold insert (ToDoItem t) {..} .
ToDoItem deleteMin () {..} with these classes

// more methods depending on their
) implementation?
public class ToDoItem {

private Date date;

private String description;

/) methods Think of some client
) code that might break
public class Date { abstraction through
private int day;]
private int month; aliases.
private int year;
// methods

CSE373: Data Structures &
Algorithms

Review: Aliasing and mutation

date:
description: "..."

PO —

Client Implementer

4 CSE373: Data Structures &
Algorithms

Review: The Fix

* How do we protect against aliases getting
passed back to the client?

— Copy-in and Copy-out: whenever the client gives us
a new object to store or whenever we’re giving the
client a reference to an object, we better copy it.

— Deep copying: copy the objects all the way down

— Immutability: protect by only storing things that
can’t change. Deep copy down to the level of
immutability

New Topic!

Consider this problem. How would you implement a solution?

Given: Set<Set<String>> friendGroups
representing groups of friends. You can assume unique
names for each person and each person is only in one group.

Example input:
[
["Riley", "Pascale", "Matthew", "Hunter"],
["Chloe", "Paul", "Zelina"],

["Rebecca", "Raquel", "Trung", "Kyle", "Josh"]

]

Problem: Given two Strings "Pascale"” and "Raquel”
determine if they are in the same group of friends.

Solution Ideas

Traverse each Set until you find the Set containing the first
name, then see if it also contains the second name.

Store a map of people to the set of people they are friends
with. Then find the Set of friends for the first name and see if it
contains the second name. Note, this works for friends in
multiple groups as well.
[
"Riley” > ["Pascale", "Matthew", "Hunter"],
"Pascale” > [”Riley", "Matthew", "Hunter"],

]

Store friendship in a Graph. A lot like solution 2 actually. We're
not there yet, but we’ll get there soon.

Disjoint Sets and Union-Find (new today and Friday!)
Others?

Disjoint Sets and Union Find: the plan
 What are sets and disjoint sets
 The union-find ADT for disjoint sets
Friday:
* Basic implementation with "up trees"

* Optimizations that make the implementation
much faster

CSE373: Data Structures &
Algorithms

Terminology

Empty set: I

Intersection N Union U

Notation for elements in a set:

Set S containing el, e2 and e3: {el, e2, el3}
elisanelementofS:el €S

CSE373: Data Structures & Algorithms

Disjoint sets

A set is a collection of elements (no-repeats)
Every set contains the empty set by default

Two sets are disjoint if they have no elements in
common

~5,NS, =0

Examples:
—{a, e, c}and {d, b} Disjoint
— {x,y,z}and {t, u, x} Not disjoint

Partitions

A partition P of a set S is a set of sets {S,,S,,...,S,} such
that every element of S is in exactly one §;

Put another way:
-5, US,U...US5, =S
— Foralliandj, i=jimpliesS;NS;= & (sets are disjoint
with each other)
Example: Let S be {3,b,c,d,e}
— {a}, {d,e}, {b,c} Partition
— {a,b,c}, D, {d}, {e} Partition
— {a,b,c,d,e} Partition
— {a,b,d}, {c,d,e} Not3 partition, not disjoint, both sets have d
— {a,b}, te,c} Not a partition of S (doesn’t have d)

Union Find ADT: Operations

Given an unchanging set S, create an initial partition of a set
— Typically each item in its own subset: {a}, {b}, {c}, ...
— Give each subset a "name" by choosing a representative element

Operation £ind takes an element of S and returns the
representative element of the subset it is in

Operation union takes two subsets and (permanently) makes
one larger subset

— A different partition with one fewer set
— Affects result of subsequent £ind operations
— Choice of representative element up to implementation

CSE373: Data Structures &

2 Algorithms

Subset Find for our problem

 Given an unchanging set S, create an initial partition of a set

“Riley” -> ["Riley", "Pascale", "Matthew", "Hunter"],

“Chloe” -> ["Chloe", "Paul", "Zelina"],
“Rebecca” -> ["Rebecca", "Raquel", "Trung", "Kyle",
" JOSh"]

* Operation £ind takes an element of S and returns the
representative element of the subset it is in

find (“Pascale”) returns “Riley”
find (“"Chloe”) returns “Chloe”

Not the same subset since not the same representative

CSE373: Data Structures &

13 Algorithms

Union of two subsets for our problem

Operation union takes two subsets and (permanently) makes
one larger subset

Chloe and Riley become friends, merging their two groups. Now those to
subsets become one subset. We can represent that in two ways:

Merge the sets:

“Chloe” -> ["Chloe", "Paul", "Zelina”, "Riley",
"Pascale", "Matthew", "Hunter"]

Or tell Riley that her representative is now Chloe, and on find anyone in
Riley’s old subset like £ind (“Pascale”) see what group Riley is in:
“"Riley” -> ["Pascale", "Matthew", "Hunter"],

“Chloe” -> ["Chloe", "Paul", "Zelina”,
nRiley”]

Either way, find (“Pascale”) returns “Chloe”

CSE373: Data Structures &

4 Algorithms

Another Example

e LetS=1{1,2,3,4,5,6,7,8,9}
* Letinitial partition be (will highlight representative elements red)

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}

e union(2,5):

11}, 12, 5}, 13}, 14}, 16}, 17}, 18}, 19}

« find(4)=4, £ind(2) =2, £ind(5) =2
* union(4,6), union(2,7)

11}, 12,5, 7}, 13}, {4, 6}, 18}, {9}

« find(4)=6, £ind(2) =2, £ind(5) =2
e union(2,6)

{1}, 12, 4,5, 6, 7}, {3}, {8}, {9}

CSE373: Data Structures &

= Algorithms

No other operations

e All that can "happen" is sets get unioned
— No "un-union" or "create new set" or ...

* As always: trade-offs — implementations are
different

— ideas? How do we maintain “representative” of a
subset?

e Surprisingly useful ADT, but not as common as

dictionaries, priority queues / heaps, AVL trees or
hashing

Example application: maze-building

* Build a random maze by erasing edges

Criteria:
— Possible to get from anywhere to anywhere

— No loops possible without backtracking
* After a "bad turn" have to "undo"

Maze building

Pick start edge and end edge

Start

End

Repeatedly pick random edges to
delete

One approach: just keep deleting random edges
until you can get from start to finish

Start

End

Problems with this approach

1. How can you tell when there is a path from start to
finish?
— We do not really have an algorithm yet (Graphs)

2. We have cycles, which a "good" maze avoids

3. We can’t get from anywhere to anywhere else

Start

CSE373: Data Structures &
~—~————— End

Algorithms

Revised approach

* Consider edges in random order
* But only delete them if they introduce no cycles (how? TBD)

* When done, will have one way to get from any place to any
other place (assuming no backtracking)

Start

End

* Notice the funny-looking tree in red

CSE373: Data Structures &

= Algorithms

Cells and edges

e Let’s number each cell
— 36totalfor6x6

* An (internal) edge (x,y) is the line between cells x and y
— 60 total for 6x6: (1,2), (2,3), ..., (1,7), (2,8), ...

Start 1 | 2| 3|4 | 5|6

718|910 11|12
13114 15|16 |17 | 18
191201212223 |24
2526|2728 |29 |30
3113233343536 End

The trick

e Partition the cells into disjoint sets: "are they connected"
— Initially every cell is in its own subset
e If an edge would connect two different subsets:

— then remove the edge and union the subsets
— else leave the edge because removing it makes a cycle

Start 1|2]3] 4|56 Start1 2|3]|4)5]|6
=181 9 110111112 7 8 910|111 |12
1311411511617 | 18 13 14|15 16|17 | 18
19 20|21 |22 23 24 19|20 21|22 23|24
25| 26 [27| 28 | 29 | 30 25|26 27 (28|29 30
31/32(33/34(35/36 Eng |31/32 33 34 35 36 End

Pseudocode of the algorithm

Partition = disjoint sets of connected cells, initially each cell in its own 1-
element set

Edges = set of edges not yet processed, initially all (internal) edges
* Maze = set of edges kept in maze (initially empty)

while Partition has more than one set {

pick a random edge (cell 1,cell 2) to remove from
Edges

set 1 = find(cell 1)
set 2 = find(cell 2)
1f set 1 == set 2:

add (cell 1, cell 2) to Maze
else:

union (set 1, set 2)

}
Add remaining members of Edges to Maze, then output Maze

CSE373: Data Structures &
24 .
Algorithms

pick random Edge step(27891319

{3}
Pick (8,14) {4}
{5}
{6}
{10}
Start 1 2 13|14 |5|6 {(11,17)
7 8 9101112 112}
{14,20,26,27}
1314 |15 16 |17 | 18 {15,16,21}
{18}
19 (20 |21 |22 23|24 125)
25 (26 27 (28|29 30 {28}
— {31}
31132 33 34 35 36 End {22,23,24,29,30,32
33,34,35,36}

(U)

CSE373: Data Structures &
Algorithms

25

Example pick random Edge step

ﬁ:artition:
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}

{31}
{22,23,24,29,30,32

33,34,35,36)
U 4

Chosen
Edge: (8, 14)

Find(8) = 7
Find(14) = 20

Union(7,20)

D

Since we
unioned the
two sets, we
“deleted”

the edge and
don’t add the
edge to our

Maze
CSE373: Data Structure

{3}

{4}

{5}

{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}

{31}
{22,23,24,29,30,32

k?»s,%ss,%}

ﬁartition: \
{1,2,7,8,9,13,19,14,20,26,27}

4

s & Algorithms

26

Add edge to Maze ste

Pick (19,20)

Start 1

.
13
19

25

2
8
14
20
26

3

4 1 5|6

9

10| 11 [12

15
21

16 | 17 | 18

22 23|24

27

28 |29 30

31

32

33

34 35 36 End

Since we didn’t union the sets together,
we don’t want to delete this edge (it
would introduce a cycle). We add the
edge (19,20) to our Maze.

P
(artition: \

{1,2,7,8,9,13,19,14,20,26,27}

{3}

4}

1o}

{6}

110}
(1,17}
112}
{15,16,21}
18}

125}

128}

31}
{22,23,24,29,30,32

\33,%35,36} /

At the end

e Stop when Partition has one set

* Suppose green edges are already in Maze and black edges
were not yet picked
(")
— Add all black edges to Maze S
{1,2,3,4,5,6,7,... 36}

U)

Stat1 2 3|4 5 6
7 8 9 10 11|12
13[14]15 16 1718
192021 22 23|24
25 26 27 28|29 30
31|32 33 34 35 36 Eng

CSE373: Data Structures &

28 Algorithms

Applications / Thoughts on Union-Find

Maze-building is cute © and a surprising use of the union-find ADT

Many other uses:
— Road/network/graph connectivity (will see this again)
* "connected components" e.g., in social network
— Partition an image by connected-pixels-of-similar-color

— Type inference in programming languages

Our friend group example could be done with Graphs (we’ll learn
about them later) but we can use Union-Find for a much less
storage intense implementation. Cool! ©

Union-Find is not as common as dictionaries, queues, and stacks,
but valuable because implementations are very fast, so when
applicable can provide big improvements

Today’s Takeaways

* Understand:
 disjoint sets, partitions, and set notation
* find operation
* union operation
* Maze application

* Be thinking about how you might implement
this. How do you store a subset? How do you
know what the “representative” is? How do
you merge? (We’ll talk about it on Friday)

