CSE373: Data Structures & Algorithms

More Heaps; Dictionaries; Binary Search Trees

Riley Porter
Winter 2016

Winter 2017

Review of last time: Heaps

Heaps follow the following two properties:

* Structure property: A complete binary tree
* Heap order property: The priority of the children is

always a greater value than the parents (greater
value means less priority / less importance)

g ey

not a heap not a heap a heap

E :D
Winter 2017 2 CSE373: Data Structu.res &
Algorithms

Review: Array Representation

Starting at node i

left child: 1*2
right child: 1 *2+1
parent: 1/2

(wasting index O is
convenient for the
index arithmetic)
implicit (array) implementation:

A| B | C | D/|E F | G| H I J K | L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

CSE373: Data Structures
Algorithms

Winter 2017

Review: Heap Operations

insert:

(1) add the new value at the next valid place in the
structure

(2) (2) fix the ordering property by percolating value up to
the right position
deleteMin:
(1) remove smallest value at root

(2) plug vacant spot at root with value from the last spot in
the tree, keeping the structure valid

(3) fix the ordering property by percolating the value down
to the right position

Review: Heap Operations Runtimes

insert and deleteMin both O (logN)

at worst case, the number of swaps you have to do
is the height of the tree. The height of a complete
tree with N nodes is logN.

Intuition:
1 Node 0 29 Nodes
2 Nodes @ 9 21 Nodes

4 Nodes (75)(60) C8) 22 Nodes

CSE373: Data Structures &

Winter 2017 5 Algorithms

Build Heap

e Suppose you have n items to put in a new (empty)
priority queue
— Call this operation buildHeap

* ndistinct inserts works (slowly)
— Only choice if ADT doesn’t provide buildHeap explicitly

— O(n 1logn)

 Why would an ADT provide this unnecessary operation?
— Convenience
— Efficiency: an O(n) algorithm called Floyd’s Method

— Common tradeoff in ADT design: how many specialized
operations

Floyd’s Method

Intuition: if you have a lot of values to insert all at once, you can
optimize by inserting them all and then doing a pass for swapping

1. Putthe nvalues anywhere to make a complete structural tree

2. Treat it as a heap and fix the heap-order property

— Bottom-up: leaves are already in heap order, work up toward the
root one level at a time

void buildHeap () ({

for(i = size/2; 1>0; i--) {
val = arr[i];
hole = percolateDown(i,val) ;
arr hole] = wval;

CSE373: Data Structures &

Winter 2017 U Algorithms

Example

Build a heap with the values:
12,5,11,3,10,2,9,4,8,1,7,6 @

Stick them all in the tree to
make a valid structure e @

In tree form for readability.

Notice: e @ 9 e

— Purple for node values to fix
(heap-order problem)

— Notice no leaves are purple @ 9 o o e

— Check/fix each non-leaf
bottom-up (6 steps here)

CSE373: Data Structures &

Winter 2017 8 Algorithms

Algorithm Example

Purple shows the nodes that will
need to be fixed.

We don’t know which ones they
are yet, so we’ll traverse bottom
up one level at a time and fix all

the values.

Values to consider on each level
circled in blue

Winter 2017 9 CSE373: Data Structu.res &
Algorithms

Algorithm Example

 Happens to already be less than it’s child

CSE373: Data Structures &

Winter 2017 10 Algorithms

=
éeéé
* Percolate down (notice that moves 1 up)

CSE373: Data Structures &

Winter 2017 11 Algorithms

* Another nothing-to-do step

CSE373: Data Structures &

Winter 2017 12 Algorithms

Example

o) o

GFsegzse

* Percolate down as necessary (steps 4a and 4b)

CSE373: Data Structures &

Winter 2017 13 Algorithms

Example

-
Ggpes s

CSE373: Data Structures &
Algorithms

Winter 2017 14

CSE373: Data Structures &
Algorithms

Winter 2017 15

But is it right?

* “Seems to work”
— Let’s prove it restores the heap property (correctness)

— Then let’s prove its running time (efficiency)

Winter 2017

void buildHeap () {

for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown (i,val) ;
arr hole] = wval;

16

CSE373: Data Structures &
Algorithms

Correctness

void buildHeap () {

for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown (i,val) ;
arrhole] = wval;

}

Loop Invariant: For all §>1, arxr[j] is less than its children
* Trueinitially:If § > size/2,then jis aleaf
— Otherwise its left child would be at position > size

 True after one more iteration: loop body and
percolateDown make arr[i] less than children without

breaking the property for any descendants
So after the loop finishes, all nodes are less than their children

CSE373: Data Structures &

Winter 2017 17 Algorithms

Efficiency

void buildHeap () {

for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown (i,val) ;
arrhole] = wval;

}

Easy argument: buildHeap is O(n 1og n) where nis size

e size/2 loop iterations
* Eachiteration does one percolateDown, each is O(1log n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm...

Winter 2017

18

CSE373: Data Structures &
Algorithms

Efficiency

void buildHeap () {

for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown (i,val) ;
arrhole] = wval;

}
}

Better argument: buildHeap is O(n) where nis size
e size/2 total loop iterations: O(n)

 1/2 the loop iterations percolate at most 1 step

* 1/4 the loop iterations percolate at most 2 steps

* 1/8 the loop iterations percolate at most 3 steps

* ((1/2) +(2/4) + (3/8) + (4/16) + (5/32) + ...) < 2 (page 4 of Weiss)
— So at most 2 (size/2) total percolate steps: O(n)

Lessons from buildHeap

Without buildHeap, our ADT already let clients implement
their own in O(n 1og n) worst case

— Worst case is inserting better priority values later

By providing a specialized operation internal to the data
structure (with access to the internal data), we can do O(n) worst
case

— Intuition: Most data is near a leaf, so better to percolate down

Can analyze this algorithm for:
— Correctness:
* Non-trivial inductive proof using loop invariant
— Efficiency:
* First analysis easily proved it was O(n 1og n)
* Tighter analysis shows same algorithm is O(n)

What we’re skipping

* merge: giventwo priority queues, make one priority
gueue

— How might you merge binary heaps:
* If one heap is much smaller than the other?
* If both are about the same size?

— Different pointer-based data structures for priority
queues support logarithmic time merge operation
(impossible with binary heaps)

 Leftist heaps, skew heaps, binomial queues
* Worse constant factors
* Trade-offs!

Take a breath

Let’s talk about more ADTs and Data Structures:
— Dictionaries/Maps (and briefly Sets)
— Binary Search Trees

Clear your mind with this picture of a kitten:

CSE373: Data Structures &

Winter 2017 22 Algorithms

The Dictionary (a.k.a. Map) ADT

Py Data: : ; E

— set of (key,)
pairs

— keys must be
comparable >

insert()

* Operations: _ find(Stark)
— insert (key,value) :
— find (key) >
— delete (key) :

Will tend to emphasize the keys; don’t

| forget about the stored values
Winter 2017 23

Comparison: The Set ADT

The Set ADT is like a Dictionary without any values
— A key is present or not (no duplicates)

For £find, insert, delete, there is little difference
— In dictionary, values are “just along for the ride”

— So same data-structure ideas work for dictionaries and
sets

But if your Set ADT has other important operations this
may not hold
— union, intersection, 1s_subset
— Notice these are binary operators on sets

binary operation: a rule for combining two objects of a given type, to obtain another object of that type

Applications

Any time you want to store information according to some key and be able
to retrieve it efficiently. Lots of programs do that!

Lots of fast look-up uses in search: inverted
indexes, storing a phone directory, etc

Routing information through a Network

Operating systems looking up information in page
tables

Compilers looking up information in symbol tables
Databases storing data in fast searchable indexes
Biology genome maps

Dictionary Implementation Intuition

We store the keys with their values so all we
really care about is how the keys are stored.

— want fast operations for iterating over the keys

You could think about this in a couple ways:

HAE

—
.

Winter 2017

Simple implementations

For dictionary with n key/value pairs

insert find delete

Unsorted linked-list 0(1)* o(n) o(n)

Unsorted array O(1)* O(n) O(n)

Sorted linked list O(n) O(n) O(n)

Sorted array O(n) Oflogn) O(n)

* Unless we need to check for duplicates

We'll see a Binary Search Tree (BST) probably does better, but not in the worst

case unless we keep it balanced
Winter 2017 27

Implementations we’ll see soon

There are many good data structures for (large)
dictionaries

1. AVL trees (next week)
— Binary search trees with guaranteed balancing

2. B-Trees (an extra topic we might have time for)
— Also always balanced, but different and shallower
— B # Binary; B-Trees generally have large branching factor

3. Hashtables (in two weeks)
— Not tree-like at all

Skipping: Other, really cool, balanced trees (e.g., red-black,
splay)

Winter 2017 28

Reference: Tree Terminology

e node: an object containing a data value and left/
right children

¢ root: topmost node of a tree
¢ |eaf: a node that has no children
¢ branch: any internal node (non-root)

root

e parent: a node that refers to this one
height = 2

4

e child: a node that this node refers to Level 0

¢ sibling: a node with a common

e subtree: the smaller tree of nodes on e
. Level 1
the left or right of the current node

¢ height: length of the longest path
from the root to any node (count edges) Level 2 e e 6 0
eve
e |evel or depth: length of the path
29

from a root to a given node Winter 2017

Reference: kinds of trees

Certain terms define trees with specific structure

* Binary tree: Each node has at most 2 children (branching factor 2)
* n-ary tree: Each node has at most n children (branching factor n)
* Perfect tree: Each row completely full

* Full tree: Each node has 0 or 2 children

* Complete tree: Each row completely full except maybe the bottom row,
which is filled from left to right

Pep ey

Winter 2017 30

Review from 143: Tree Traversals

A traversal is an order for visiting all the
nodes of a tree

* Pre-order: root, left subtree, right subtree

* In-order: left subtree, root, right subtree

 Post-order: left subtree, right subtree,
root

Review from 143: Tree Traversals

A traversal is an order for visiting all the
nodes of a tree

* Pre-order:root, left subtree, right subtree

103245 e e

* In-order: left subtree, root, right subtree

234105 (2) (&

* Post-order: left subtree, right subtree,
root

243510

Winter 2017 32

More on traversals

volid inOrderTraversal (Node t) {
1f(t !'= null) {
inOrderTraversal (t.left);
process (t.element) ;
inOrderTraversal (t.right);

Sometimes order doesn’t matter
 Example: sum all elements
Sometimes order matters
* Example: print tree with parent above
indented children (pre-order)
 Example: evaluate an expression tree
(post-order)

Winter 2017 33

6066

A

Computable data for Binary Trees

Recall: height of a tree = longest path from root to
leaf (count edges)

For binary tree of height h:

— max # of leaves: 2h For n nodes: .
- best case is

— max # of nodes: 2(h+1)_1 O(log n) height
- worst case is

— min # of leaves: 1 O(n) height

— min # of nodes: h+1

Winter 2017 34

Review: Binary Search Tree

Structure property (“binary”)
— Each node has = 2 children
— Result: keeps operations simple @

Order property e @

— All keys in left subtree smaller
than node’s key

— All keys in right subtree larger 9 G @ @

than node’s key

— Result: easy to find any given key Q 0 9 @

Winter 2017

35

Are these BSTs?

Are these BSTs?

Find in BST, Recursive

int find(Key key, Node root) {
1f (root == null)

return null;
9 @ 1f (key < root.key)
return find(key,root.left);
1f (key > root.key)

9 e @ return find(key, root.right);

return root.data;

}

Winter 2017 38

Find in BST, Iterative

€!> int find(Key key, Node root) {
while (root !'= null && root.key != key) {
1f (key < root.key)

e @ root = root.left;

else (key > root.key)
root = root.right;

}
9 e @ 1f (root == null)

return null;
return root.data;

D0 @G

Winter 2017 39

Other “Finding” Operations

* Find minimum node
e Find maximum node

* Find predecessor of a non-leaf
* Find successor of a non-leaf

* Find predecessor of a leaf

* Find successor of a leaf

Winter 2017

40

Winter 2017

Insert in BST

41

insert (13)
insert (8)
insert (31)

(New) insertions happen only at
leaves — easy!

Deletion in BST

Why might deletion be harder than insertion?

Winter 2017 42

Deletion

Removing an item disrupts the tree structure

Basic idea: £ind the node to be removed, then
“fix” the tree so that it is still a binary search tree

Three cases:
— Node has no children (leaf)
— Node has one child
— Node has two children

Deletion — The Leaf Case

Deletion — The One Child Case

delete (15 o
(5
OO
QIO 0

Deletion — The Two Child Case

delete (D)

What can we replace 5 with?

Winter 2017 46

Deletion — The Two Child Case

|Idea: Replace the deleted node with a value guaranteed to be
between the two child subtrees

Options:
* successor fromright subtree: £findMin (node.right)

 predecessor from left subtree:
findMax (node.left)

— These are the easy cases of predecessor/successor

Now delete the original node containing successor or
predecessor

* Leaf or one child case — easy cases of delete!

Today’s Takeaways

* Floyd’s Algorithm for building heaps: understand why it
works and how it’s implemented.

* Review Dictionaries/Maps/Sets: understand how to be a
client of them and the ADT, think about tradeoffs for
implementations.

 Review BSTs: Understand the terms, how to insert, delete,
and evaluate the runtime of those operations.

