CSE 373: Data Structures & Algorithms
Wrap up Amortized Analysis; AVL Trees

Riley Porter
Winter 2017

Winter 2017 CSE373: Data Structures & Algorithms

Course Logistics

* Symposium offered by CSE department today

« HW?2 released, Big-O, Heaps (lecture slides
have pseudocode that will help a lot)

 Weekly summaries out soon

Review: Amortized Complexity

* For a Stack implemented with an array can
we claim push is O(1) time if resizing is O(n)
time?

— We can’t, but we can claim it’s an O(1) amortized
operation

* Why is this good? Why do we care?

— If amortized is good enough for our problem,
then it’s great to be able to say O(1) instead of
O(n)

CSE373: Data Structures &

ey
Winter 2017 Algorithms

Review: Amortized Complexity

* Like an Average.

N inserts at 1 unit cost + 1 insert at N unit cost
=N*1+1*N
2N overall cost for N + 1 insertions
= 2N cost /(N + 1) insertions
= O(2N/(N+1))
= O(1) amortized cost

CSE373: Data Structures &

Winter 2017 4 Algorithms

Not-Amortized Complexity

What if we only add 3 slots instead of N slots?
3 inserts at 1 unit cost + 1 insert at N unit cost
=3*1+1*N
= N + 3 overall cost for N + 1 insertions
=N+ 3cost/(3 +1)insertions
= O((N+3)/(3+1))
= O(N)
Not Amortized! Didn’t build up enough “credit”

CSE373: Data Structures &

Winter 2017 Algorithms

Example #1: Resizing stack

A stack implemented with an array where we double the size
of the array if it becomes full

Claim: Any sequence of push/pop/isEmpty is amortized O(1)

Need to show any sequence of M operations takes time O(M)

— Recall the non-resizing work is O(M) (i.e., M*0O(1))

— The resizing work is proportional to the total number of
element copies we do for the resizing

— So it suffices to show that:
After M operations, we have done < 2M total element copies

(So average number of copies per operation is bounded by a
constant)

Amount of copying

_'_l

After M operations, we have done < 2M total element
copies

Let n be the size of the array after M operations
— Then we have done a total of:
n/2 + n/4 + n/8 + .. INITIAL SIZE < n
clement copies

— Because we must have done at least enough push
operations to cause resizing up to size n:

M= n/2
— So

2M = n > number of element copies

Have to be careful

If array grows by a constant amount (say 1000),

operations are not amortized O(1)
— After O(M) operations, you may have done ©®(M?2) copies

If array doubles when full and shrinks when 1/2 empty,

operations are not amortized O(1)

- . pop once and shrink, push once and grow, pop
once and shrink, ...

If array doubles when full and shrinks when 3/4 empty,

it is amortized O(1)

— Proof is more complicated, but basic idea remains: by the time
an expensive operation occurs, many cheap ones occurred

Amortized Complexity Summary

* Like an average

* You're building up “credit” with N cheap
tasks proportional to 1 expensive N task

 Sometimes hard to prove, but useful if your
application doesn’t require every single
operation to be cheap.

There’s another example on slides from
Wednesday involving Queues, if you’re curious

Review: Balanced BST

Observation
e BST: the shallower the better!

 For a BST with n nodes inserted in arbitrary order
— Average height is O(log n) — see text for proof
— Worst case height is O(n)

 Simple cases, such as inserting in key order, lead to
the worst-case scenario

Solution: Require a Balance Condition that
1. Ensures depth is always O(log n) —strong enough!
2. Is efficient to maintain — not too strong!

Winter 2017 CSE373: Data Structures & Algorithms

The AVL Balance Condition

Left and right subtrees of every node have heights
differing by at most 1

Definition: balance(node) = height(node.left) —
height(node.right)

AVL property: for every node x, -1 =< balance(x) =1

* Ensures small depth

— Will prove this by showing that an AVL tree of height
h must have a number of nodes exponential in h

e Efficient to maintain using single and double rotations

Winter 2017 CSE373: Data Structures & Algorithms

The AVL Tree Data Structure

Structural properties
1. Binary tree property

2. Balance property:
balance of every node is
between -1 and 1

Result:

Worst-case depth is
O(log n)

Ordering property
— Same as for BST

Definition: balance(node) = height(node.left) — height(node.right)

Winter 2017 CSE373: Data Structures & Algorithms

An AVL tree?

Height = 3
Balance = -1

o Height = 2

Balance = -1

(6
a Height = 1

Balance = 1

He|ght = 0 Hel _
@ ght =1
Balance =0 @ Balance =0
Height =0
Balance =0 .@ Height =0
Balance =0
Height =0
Balance =0

CSE373: Data Structures &

Winter 2017 Algorithms

An AVL tree?

Height = 4
Balance = 2

Height = 3
Balance =2

0 Height = 1

Height =0 Balance =0

Balance =0

Height = 2
Balance = -2

. Height = 0 Height = 0
Height = 1 Balance = 0 Balance = 0
Balance = 1

Height = 0
Balance =0

CSE373: Data Structures &

Winter 2017 Algorithms

Intuition: compactness

If the heights differ by at most 1, your two
subtrees are roughly the same size

If this is true at every node, it’s true all the way
down

If this is true all the way down, your tree winds
up compact.

Height is O(logN) h
h-2 h-1

We’ll revisit the formal
proof of this soon

AVL Operations

If we have an AVL tree, the height is O(log n), so find is O(log n)

But as we insert and delete elements, we need to:
1. Track balance

2. Detect imbalance
3. Restore balance

Is this AVL tree balanced?
Yep!

How about after insert (30)?

No, now the Balance of 15 is off

: CSE373: Data Structures &
Winter 2017 e o
Algorithms

Keep the tree balanced

10

\

key
value
height

children

Track height at all times!

Winter 2017 CSE373: Data Structures & Algorithms

AVL tree Operations

e AVL find:
— Same as BST £ind

e AVL insert:

— First BST insert, then check balance and potentially
“fix” the AVL tree

— Four different imbalance cases

e AVL delete:

— The “easy way” 1s lazy deletion

— Otherwise, do the deletion and then have several
imbalance cases

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)

2. For each node on the path from the root to the new leaf, the
insertion may (or may not) have changed the node’s height

3. So after recursive insertion in a subtree, detect height
imbalance and perform a rotation to restore balance at that
node

Type of rotation will depend on the location of the imbalance (if
any)

Facts about insert imbalances:

— If there’s an imbalance, there must be a deepest element that is
imbalanced after the insert

— After rebalancing this deepest node, every node is balanced
— So at most one node needs to be rebalanced

Winter 2017 CSE373: Data Structures &

Algorithms

Case #1: Example

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance property
 happens to be at the root

What is the only way to fix this (the only valid
AVL tree with these nodes?

Winter 2017 CSE373: Data Structu.rcs &
Algorithms

Fix: Apply “Single Rotation”

* Single rotation: The basic operation we’ll use to
rebalance

— Move child of unbalanced node into parent position
— Parent becomes the “other” child (always okay in a BST!)
— Other subtrees move in only way BST allows (next slide)

AVL Property violated here

Intuition: 3 must become root
New parent height is now the old parent’s height before insert

CSE373: Data Structures &

Winter 2017 Algorithms

The example generalized

e Node imbalanced due to insertion somewhere in left-left
grandchild that causes an increasing height

— 1 of 4 possible imbalance causes (other three coming)
* First we did the insertion, which would make a imbalanced

CSE373: Data Structures &
Algorithms

Winter 2017

The general left-left case

e Node imbalanced due to insertion somewhere in
left-left grandchild

— 1 of 4 possible imbalance causes (other three coming)
 So we rotate at a,using BST facts: X<b<Y<a<Z

e Asingle rotation restores balance at the node

— To same height as before insertion, so ancestors now balanced
Winter 2017 CSE373: Data Structures &

Algorithms

Another example: insert (16)

Where is the imbalance?

CSE373: Data Structures &

Winter 2017 :
Algorithms

Another example: insert (16)

Where is the imbalance?
22

CSE373: Data Structures &

Winter 2017 Algorithms

Another example: insert (16)

CSE373: Data Structures &

Winter 2017 Algorithms

The general right-right case

* Mirror image to left-left case, so you rotate the other way
— Exact same concept, but need different code

CSE373: Data Structures &

Winter 2017 Algorithms

Case 3 & 4: left-right and right-left

Insert(1)
Insert(6)
Insert(3)

Is there a single rotation that can fix either
tree?

Insert(6)
Insert(1)
Insert(3)

CSE373: Data Structures &

Winter 2017 Algorithms

Wrong rotation #1.

Unfortunately, single rotations are not enough for
insertions in the left-right subtree or the right-left
subtree

Simple example: insert(1), insert(6), insert(3)
— First wrong idea: single rotation like we did for left-left

N
S
R R,

ol it d
S
e

A % 1
o)
SRR S
B
iy -a i

"SE373: Data Structures &

Winter 2017 Algorithms

Wrong rotation #2.

Unfortunately, single rotations are not enough for
insertions in the left-right subtree or the right-left
subtree

Simple example: insert(1), insert(6), insert(3)

— Second wrong idea: single rotation on the child of the
unbalanced node

CSE373: Data Structures &

Winter 2017 Algorithms

Sometimes two wrongs make a
right

* First idea violated the BST property
* Second idea didn’t fix balance

* But if we do both single rotations, starting with the
second, it works! (And not just for this example.)

* Double rotation:
1. Rotate problematic child and grandchild
2. Then rotate between self and new child

Intuition: 3 must become root

Winter 2017 CSE373: Data Structtq‘cs &
Algorithms

The general right-left case

Rotation 1:

b.left = c.right

c.right = b

a.right = ¢
Rotation 2:

a.right = c.left
c.left = a
root = ¢

CSE373: Data Structures &
Algorithms

Winter 2017

Comments

* Like in the left-left and right-right cases, the height of the
subtree after rebalancing is the same as before the insert

— So no ancestor in the tree will need rebalancing
* Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:

1) Move c to grandparent’s position
2) Puta, b, X, U, V, and Z in the only legal positions for a BST

Winter 2017 CSE373: Data Structures & Algorithms

The last case: left-right

* Mirror image of right-left
— Again, no new concepts, only new code to write

CSE373: Data Structures &

Winter 2017 Algorithms

Insert, summarized

Insert as in a BST

Check back up path for imbalance, which will be 1 of 4 cases:
— Node’s left-left grandchild is too tall (left-left single rotation)
— Node’s left-right grandchild is too tall (left-right double rotation)
— Node’s right-left grandchild is too tall (right-left double rotation)
— Node’s right-right grandchild is too tall (right-right double rotation)

Only one case occurs because tree was balanced before insert

After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion

— So all ancestors are now balanced

Efficiency

* Worst-case complexity of £ind: O(log n)
— Tree 1s balanced

* Worst-case complexity of insert: O(log n)
— Tree starts balanced
— Arotation is O(1) and there’s an O(log n) path to root
— (Same complexity even without one-rotation-is-enough fact)
— Tree ends balanced

* Worst-case complexity of buildTree: O(n 1og n)

Takes some more rotation action to handle delete...

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of
insert and delete

Arguments against AVL trees:

Difficult to program & debug [but done once in a library!]

More space for height field

Asymptotically faster but rebalancing takes a little time

Most large searches are done in database-like systems on disk and use
other structures (e.g., B-trees, a data structure in the text)

5. If amortized (later, | promise) logarithmic time is enough, use splay trees
(also in text)

BN e

Winter 2017 CSE373: Data Structures & Algorithms

Today’'s Takeaways

* Review of Amortized Analysis:

— feel comfortable proving a runtime’s amortized cost

* AVL trees:
— understand the AVL balance condition
— be able to 1dentify AVL trees
— intuition on why the height 1s O(logN)
— understand AVL 1nserts and rotations

