# CSE 373: Data Structures & Algorithms More AVL Trees

Riley Porter Winter 2017

#### **Course Logistics**

HW2 spec had a small typo

 Weekly summaries out soon, hopefully by tomorrow (sorry I got sick this weekend)

#### Review: AVL Trees

1. Values are correct: it's a BST

 Structure is correct: AVL balance condition. Left and right subtrees of every node have heights differing by at most 1

Result: Worst-case depth is  $O(\log n)$ 

#### Review: AVL Operations

If we have an AVL tree, the height is  $O(\log n)$ , so find is  $O(\log n)$ 

Maintenance: as we insert and delete elements, we need to keep the tree in balance. We do that with the following steps:

- 1. Track balance
- 2. Detect imbalance
- 3. Restore balance

Is this AVL tree balanced?

Yep!

How about after insert (30)?

No, now the Balance of 15 is off

Perform a rotation of the subtree 15 -> 20 -> 30



#### Review: AVL Insert

- 1. Insert the new node
- 2. Find and fix imbalances. We "fix" imbalances by doing rotation(s).



## Case #1: Example



Third insertion violates balance property. To maintain balance, we fix the tree with a rotation.

# Fix: Apply "Single Rotation"

- Single rotation: The basic operation we'll use to rebalance
  - Move child of unbalanced node into parent position
  - Parent becomes the "other" child (always okay in a BST!)
  - Other subtrees move in only way BST allows (next slide)





Intuition: 3 must become root

New parent height is now the old parent's height before insert

#### The example generalized

- Node imbalanced due to insertion somewhere in left-left grandchild that causes an increasing height
  - 1 of 4 possible imbalance causes (other three coming)
- First we did the insertion, which would make *a* imbalanced



#### The general left-left case

- Node imbalanced due to insertion somewhere in left-left grandchild
  - 1 of 4 possible imbalance causes (other three coming)
- So we rotate at a, using BST facts: X < b < Y < a < Z</li>



- A single rotation restores balance at the node
  - To same height as before insertion, so ancestors now balanced CSE373: Data Structures &

#### Why does this work: values

• Let's look at the BST property. Identify all values less than and greater than 'a'.



#### Why does this work: values

 Let's look at the BST property. All values < a are blue. All values > a are orange. They still hold for the BST order property after rotation.



## Why does this work: values

#### Before rotation:

- b < a
- X < a</li>
- Y < a</li>
- Z > a

#### After rotation:

- b < a
- X < a</li>
- Y < a</li>
- Z > a





#### Why does this work: heights

• After inserting the new red node, identify the heights of each subtree.





Where is the imbalance?



Where is the imbalance?

22



What are the generalized subtrees?



# Case #2: right-right generalized

- Mirror image to left-left case, so you rotate the other way
  - Exact same concept, but different code



#### Rotations so far

Cases we've covered:





Cases we haven't covered:





#### Case 3 & 4: left-right and right-left



Insert(1)

Insert(6)

Insert(3)

Is there a single rotation that can fix either tree?

Insert(6)

Insert(1)

Insert(3)

#### Wrong rotation #1:

Unfortunately, single rotations are not enough for insertions in the **left-right** subtree or the **right-left** subtree

Simple example: insert(1), insert(6), insert(3)

First wrong idea: single rotation like we did for left-left



Wrong rotation #2: Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

#### Simple example: insert(1), insert(6), insert(3)

 Second wrong idea: single rotation on the child of the unbalanced node



#### Sometimes two wrongs make a right

- First idea violated the BST property
- Second idea didn't fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)
- Double rotation:
  - Rotate problematic child and grandchild
  - Then rotate between self and new child



Winter 2017

Algorithms

The general right-left case



Algorithms

# Keeping track of values



# Keeping track of values 2



#### The last case: left-right

- Mirror image of right-left
  - Again, no new concepts, only new code to write



#### Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
  - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:



Easier to remember than you may think:

- 1) Move c to grandparent's position
- 2) Put a, b, X, U, V, and Z in the only legal positions for a BST

Winter 2017

#### Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
  - Node's left-left grandchild is too tall (left-left single rotation)
  - Node's left-right grandchild is too tall (left-right double rotation)
  - Node's right-left grandchild is too tall (right-left double rotation)
  - Node's right-right grandchild is too tall (right-right double rotation)
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
  - So all ancestors are now balanced

#### Efficiency

- Worst-case complexity of find:  $O(\log n)$ 
  - Tree is balanced
- Worst-case complexity of insert:  $O(\log n)$ 
  - Tree starts balanced
  - A rotation is O(1) and there's an  $O(\log n)$  path to root
  - (Same complexity even without one-rotation-is-enough fact)
  - Tree ends balanced
- Worst-case complexity of buildTree:  $O(n \log n)$

Takes some more rotation action to handle **delete...** 

#### Pros and Cons of AVL Trees

#### Arguments for AVL trees:

- 1. All operations logarithmic worst-case because trees are *always* balanced
- 2. Height balancing adds no more than a constant factor to the speed of insert and delete

#### Arguments against AVL trees:

- 1. Difficult to program & debug [but done once in a library!]
- 2. More space for height field
- 3. Asymptotically faster but rebalancing takes a little time
- 4. Most large searches are done in database-like systems on disk and use other structures (e.g., *B*-trees, a data structure in the text)
- 5. If *amortized* (later, I promise) logarithmic time is enough, use splay trees (also in text)

Winter 2017

#### Today's Takeaways

#### AVL trees:

- understand the AVL balance condition
- be able to identify AVL trees
- intuition on why the height is O(logN)
- understand AVL inserts and rotations:
  - single rotations
  - double rotations
- understand complexity of AVL operations