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Course Logistics

* HW2 spec had a small typo

 Weekly summaries out soon, hopefully by
tomorrow (sorry | got sick this weekend)



Review: AVL Trees

1. Values are correct: it’s a BST

2. Structure is correct: AVL balance
condition. Left and right subtrees of
every node have heights differing by at
most 1

Result: Worst-case depth is O(log n)



Review: AVL Operations

If we have an AVL tree, the height is O(log n), so find is O(log n)

Maintenance: as we insert and delete elements, we need to keep
the tree in balance. We do that with the following steps:

1. Track balance
2. Detect imbalance
3. Restore balance

Is this AVL tree balanced?
Yep!
How about after insert (30) ?
No, now the Balance of 15 is off

Perform a rotation of the subtree
15 ->20-> 30




Review: AVL Insert

1. Insert the new node

2. Find and fix imbalances. We “fix”
imbalances by doing rotation(s).
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Case #1: Example

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance property. To
maintain balance, we fix the tree with a rotation.
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Fix: Apply “Single Rotation”

* Single rotation: The basic operation we’ll use to
rebalance

— Move child of unbalanced node into parent position
— Parent becomes the “other” child (always okay in a BST!)
— Other subtrees move in only way BST allows (next slide)

AVL Property violated here

Intuition: 3 must become root
New parent height is now the old parent’s height before insert
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The example generalized

e Node imbalanced due to insertion somewhere in left-left
grandchild that causes an increasing height

— 1 of 4 possible imbalance causes (other three coming)
* First we did the insertion, which would make a imbalanced
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The general left-left case

e Node imbalanced due to insertion somewhere in
left-left grandchild

— 1 of 4 possible imbalance causes (other three coming)
 So we rotate at a,using BST facts: X<b<Y<a<Z

h+1

e Asingle rotation restores balance at the node

— To same height as before insertion, so ancestors now balanced
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Why does this work: values

* Let’s look at the BST property. Identify all
values less than and greater than ‘a’.
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Why does this work: values

e Let’s look at the BST property. All values < a
are blue. All values > a are . They still
hold for the BST order property after rotation.
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Why does this work: values

Before rotation: After rotation:
e b<a e b<a
e X<23 e X<a
e Y<a * Y<a
> a > a
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Why does this work: heights

* After inserting the new red node, identify the
heights of each subtree.




Another example: insert (16)

Where is the imbalance?

CSE373: Data Structures &

Winter 2017 :
Algorithms



Another example: insert (16)

Where is the imbalance?
22
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Another example: insert (16)

What are the generalized subtrees?
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Another example: insert (16)
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Case #2: right-right generalized

 Mirror image to left-left case, so you rotate the other way
— Exact same concept, but different code
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Rotations so far
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Cases we haven’t covered:

Winter 2017



Case 3 & 4. left-right and right-left

Insert(1)
Insert(6)
Insert(3)

Is there a single rotation that can fix either tree?

Insert(6)
Insert(1)
Insert(3)
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Wrong rotation #1.

Unfortunately, single rotations are not enough for
insertions in the left-right subtree or the right-left
subtree

Simple example: insert(1), insert(6), insert(3)
— First wrong idea: single rotation like we did for left-left

N
S
R R,

ol it d
S
e

A % 1
o)
SRR S
B
iy -a i

"SE373: Data Structures &

Winter 2017 Algorithms



Wrong rotation #2.

Unfortunately, single rotations are not enough for
insertions in the left-right subtree or the right-left
subtree

Simple example: insert(1), insert(6), insert(3)

— Second wrong idea: single rotation on the child of the
unbalanced node
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Sometimes two wrongs make a
right

* First idea violated the BST property
* Second idea didn’t fix balance

* But if we do both single rotations, starting with the
second, it works! (And not just for this example.)

* Double rotation:
1. Rotate problematic child and grandchild
2. Then rotate between self and new child

Intuition: 3 must become root
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The general right-left case

Rotation 1:

b.left = c.right

c.right = b

a.right = ¢
Rotation 2:

a.right = c.left
c.left = a
root = ¢
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Keeping track of values

First rotation (around

node ‘b’):

* Subtrees < ‘b’ in blue

* Subtrees > ‘b’ in
orange
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Keeping track of values 2

Second rotation (around
node ‘@’):

e Subtrees < ‘@’ in blue

e Subtrees > ‘a’ in orange
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The last case: left-right

* Mirror image of right-left
— Again, no new concepts, only new code to write
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Comments

* Like in the left-left and right-right cases, the height of the
subtree after rebalancing is the same as before the insert

— So no ancestor in the tree will need rebalancing
* Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:

1) Move c to grandparent’s position
2) Puta, b, X, U, V, and Z in the only legal positions for a BST
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Insert, summarized

Insert as in a BST

Check back up path for imbalance, which will be 1 of 4 cases:
— Node’s left-left grandchild is too tall (left-left single rotation)
— Node’s left-right grandchild is too tall (left-right double rotation)
— Node’s right-left grandchild is too tall (right-left double rotation)
— Node’s right-right grandchild is too tall (right-right double rotation)

Only one case occurs because tree was balanced before insert

After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion

— So all ancestors are now balanced



Efficiency

* Worst-case complexity of £ind: O(log n)
— Tree 1s balanced

* Worst-case complexity of insert: O(log n)
— Tree starts balanced
— Arotation is O(1) and there’s an O(log n) path to root
— (Same complexity even without one-rotation-is-enough fact)
— Tree ends balanced

* Worst-case complexity of buildTree: O(n 1og n)

Takes some more rotation action to handle delete...



Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of
insert and delete

Arguments against AVL trees:

Difficult to program & debug [but done once in a library!]

More space for height field

Asymptotically faster but rebalancing takes a little time

Most large searches are done in database-like systems on disk and use
other structures (e.g., B-trees, a data structure in the text)

5. If amortized (later, | promise) logarithmic time is enough, use splay trees
(also in text)
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Today’'s Takeaways

* AVL trees:
— understand the AVL balance condition
— be able to identify AVL trees
— intuition on why the height is O(logN)
— understand AVL inserts and rotations:

* single rotations
e double rotations

— understand complexity of AVL operations



