CSE 373: Data Structures and Algorithms
Pep Talk; Algorithm Analysis

Riley Porter
Winter 2017

Announcements

e Optional Java Review Section: PAA A102 Tuesday,
January 10th, 3:30-4:30pm. Any materials covered will
be posted online. TAs will be around after the session
to answer questions.

e TA office hours will be posted on the website later
today

e HW1 released after class today
— Extension: Due Tuesday, January 17t" at 11:00PM

Winter 2017 CSE373: Data Structures & Algorithms

Assumed Knowledge (Pep Talk)

e Objects in Java: fields, methods, encapsulation,
inheritance, interfaces, classes

e Being the Client of Data Structures: List, Set, Stack,
Queue, Map, Trees

e Being the implementer of Data Structures: ArraylList,
LinkedList, Binary Trees, testing your objects

e Binary Search, and some awareness of how sorting
works: merge sort, selection sort.

e Some basic analysis about above. Examples:

— when to use a HashSet vs a TreeSet?
— when does adding into an ArrayList become expensive?
— why does sorting an array help for searching?

Winter 2017 CSE373: Data Structures & Algorithms

NOT Assumed Knowledge

Full understanding of the difference between the
definitions of ADTs vs Data Structures vs
Implementations

Big O analysis. Maybe you have some awareness, but
we don’t expect mastery of Big O yet.

Indepth analysis or mastery of sorting or hashing.

Anything at all about Graphs, Heaps, AVL Trees, Union
Find, Disjoint Sets, Hashing, Topological Sort,
Parallelism

Any advanced algorithms, dynamic programming, P vs
NP, complexity theory, proofs, induction

Winter 2017 CSE373: Data Structures & Algorithms

Review of last time: Heaps

Heaps follow the following two properties:
« Structure property: A complete binary tree

« Heap order property: The priority of the children is always a
greater value than the parents (greater value means less
priority / less importance)

:/«f':;

not a heap notah

Winter 2017 CSE373: Data Structures & Algorithms 5

Today — Algorithm Analysis

e Review math for algorithm analysis
— Exponents and logarithms, floor and ceiling

e Analyzing code
e Big-O definition
e Using asymptotic analysis (continue next time)

e Set ourselves up to analyze why we use Heaps for
Priority Queues (continue later this week)

Winter 2017 CSE373: Data Structures & Algorithms

Review of Logarithms

« log,x=y If x=2Y (so, 1o0g,1,000,000 = “a little
under 20”)

e Just as exponents grow very quickly, logarithms
grow very slowly

e Log base B compared to log base 2 doesn’t matter

so much

— In computer science we use base 2 because it works nicely
with binary and how a computer does math.

— we are about to stop worrying about constant factors
— In particular, 1og, x = 3.22 log,, x

Winter 2017 CSE373: Data Structures & Algorithms 7

Review of log properties

log(A*B) = log A + log B
— SO0 log(N¥)= k log N

log(A/B) = log A - log B

log(log x) is written log log x
— Grows as slowly as 22 grows quickly

(log x) (log x) is written log?x
— ltis greater than 1log xforallx > 2
— Itis not the same as 1log log x

Winter 2017 CSE373: Data Structures & Algorithms

Review of floor and celiling

XJ Floor function: the largest integer < X

2.7|=2 |-2.7]|=-3 2|=2

[X-‘ Ceiling function: the smallest integer > X

[2.3]=3 [-2.3]=-2 [2]=2

Winter 2017 CSE373: Data Structures & Algorithms

Comparing Algorithms

e When is one algorithm (not implementation) better
than another?
— Various possible answers (clarity, security, ...)
— But a big one is performance: for sufficiently large
inputs, runs in less time or less space
e Large inputs (n) because probably any algorithm is
“fine” for small inputs

e Answer will be independent of CPU speed,
programming language, coding tricks, etc.

Winter 2017 CSE373: Data Structures & Algorithms

10

Comparing Algorithms Example

4 121 5] 11 8] 6]10] 9] 3| 7

e Given the above list, search for 3, which is better?
— binary search
— linear search

1121 31 41567] 8] 9] 10

e Given the above list, search for 3, which is better?
— binary search
— linear search

Winter 2017 CSE373: Data Structures & Algorithms

Analyzing Algorithms

As the size of an algorithm’s input grows:
— How much longer does the algorithm take ()

— How much more memory does the algorithm need ()

e |gnore constant factors, think about large input:

— there exists some input size n,, that for all input sizes

n larger than n,, binary search is better than linear
search on sorted input

e Analyze code to compute runtime, then look at how the

runtime behaves as n gets really large (asymptotic
runtime)

Winter 2017 CSE373: Data Structures & Algorithms 12

Analyzing Code

“Constant time” operations:

e Arithmetic, Variable Assignment, Access one Java field
or array index, etc

Complex operations (approximation):
e Consecutive Statements: Sum of time of each statement

e Conditionals: Time of condition + max(ifBranch,
elseBranch)

e Loops: Number of iterations * Time for Loop Body
e Function Calls: Time of function’s body

Winter 2017 CSE373: Data Structures & Algorithms 13

Example

What is the runtime of this pseudocode:

x :=0
for i=1 to N do
for j=1 to N do
X :=x + 3
return x

Winter 2017 CSE373: Data Structures & Algorithms 14

Example Solution

What is the runtime of this pseudocode:

x :=0
for i=1 to N do
for j=1 to N do
X :=x + 3
return x

1 assignment +
(N iterations of loop *
(N iterations of loop *
1 assignment and math))
1 return

1+ (N*(N*1)+1=N2+2

However, what we care about here is the N? part.

Let’s look at asymptotic runtimes to see why.

Winter 2017 CSE373: Data Structures & Algorithms

15

Asymptotic Intuition with Pictures

900

800

/

700

/

600

500

amm—Y =\

e—=)N

400

/ Y =4N

300

200

100 - ,

26

51

76 101 126 151 176

Winter 2017

Are these the same?

CSE373: Data Structures & Algorithms

16

45000

40000 -

35000

30000 -

25000 -

20000 -

15000 -

10000

5000 -

Asymptotic Intuition with Pictures

Y =N
—y=2N
Y=4N

—Y=NI\2

1 26 51 76 101 126 151 176

What about now that we compare them to y=N27?

Winter 2017 CSE373: Data Structures & Algorithms 17

Asymptotic Intuition with Pictures

700

600

500

400

300

200

100

-100

/
/
/
/ I
| —

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

mm—Y=N~2-50

m—Y=2N+100

What about these? One starts off much lower than the other

Winter 2017

one, but grows much faster.

CSE373: Data Structures & Algorithms

18

About to show formal definition, which amounts to saying:

Asymptotic Notation

1. Calculate Runtime by analyzing code
2. Eliminate low-order terms
3. Ignore constants and coefficients

Examples:

4n+ 5
0.5nlogn+2n+7
nd+ 2"+ 3n

n log (10n?)

Winter 2017 CSE373: Data Structure & Algorithms

19

Examples with Big-O Asymptotic Notation

True or False?

1. 3n+10 € O (n)

. 4+2n € 0(1)

. 20-3n € 0(n?)
.n+t2logn € O(logn)
. logn € 0O(n+2logn)

g s Ww N

Winter 2017 CSE373: Data Structures & Algorithms 20

Examples with Big-O Asymptotic Notation
Solutions

True or False?

1. 3n+10 € 0O (n) True(n=n)

. 442n € 0O (1) False: (n>>1)

. 20-3n € 0(n?) True:(n<n?)

. n+2logn € O (logn) False: (n>>logn)

g s Ww N

. logn € 0O (n+2logn) True: (logn < n+2logn)

Winter 2017 CSE373: Data Structures & Algorithms 21

Formally Big-O

Definition:
g(n) is in O(f(n)) if there exist constants

¢ and n, such that g(n) < cf(n)foralln=n,

« Toshow g(n)isin , pick a ¢ large enough to “cover the
constant factors™ and n,large enough to “cover the lower-order
terms”

— Example: Let g(n) = 3n°+17 and f(n) = n?
¢=5 and n,=10 is more than good enough

 This is “less than or equal to”
— So 3n?+17 is also O(n°) and O(2") etc.

Winter 2017 CSE373: Data Structure & Algorithms 22

Big-O

We use O on a function f(n) (for example n?) to mean the set of
functions with asymptotic behavior f(n)

So (3n?+17) is in O(n?)
— 3n%+17 and n? have the same asymptotic behavior

What it means:

— For your runtime, asymptotically, O(function) is the family of
functions that defines the upper bound.

— There is a size of input (n,) and a constant factor (c) you
can use to make O(function) strictly larger than your
runtime.

Winter 2017 CSE373: Data Structure & Algorithms 23

Examples using formal definition

A valid proof is to find valid c and n,.
« Letg(n) =1000n and f(n) = n*
— The “cross-over point” is n=1000
— So we can choose n,=1000 and c=1
- Many other possible choices, e.g., larger n,and/or ¢
« Letg(n)=n*andf(n)=2"
— We can choose n,=20 and c=1

Definition:
g(n) is in O(f(n)) if there exist constants

¢ and n, such that g(n) < cf(n)foralln=n,

Winter 2017 CSE373: Data Structure & Algorithms

24

What's with the ¢

« The constant multiplier ¢ is what allows functions that differ only

in their largest coefficient to have the same asymptotic
complexity

« Example: g(n) =7n+5 and f(n) = n

— For any choice of n,, need a ¢ > 7 (or more) to show g(n) is
in O(f(n))

Definition:
g(n)isin if there exist constants

¢ and n, such that g(n) < cf(n)foralln=n,

Winter 2017 CSE373: Data Structure & Algorithms 25

Big-O: Common Names

O(1) constant (same as O(k) for constant k)

O(log n) logarithmic

O(n) linear

O(n log n) “nlog n”

O(n?) quadratic

O(n3) cubic

O(nk) polynomial (where is k is any constant: linear,

quadratic and cubic all fit here too.)
O(k") exponential (where k is any constant > 1)

Note: “exponential” does not mean “grows really fast”, it means
“grows at rate proportional to k" for some k>1". Example: a savings

account accrues interest exponentially (k=1.017).

Winter 2017 CSE373: Data Structures & Algorithms 26

Intuition of Common Runtimes

25

12 3 456 7 8 910111213141516171819 20

Even for small N, these look pretty different very quickly.

Winter 2017

CSE373: Data Structures & Algorithms

27

Intuition of Common Runtimes

35

30 ’

: /
: a

== 7n
15

—=logn
10

el |

)

——
—
4

Now y=N and y=logN look a lot more similar in comparison to
other runtimes.

Winter 2017 CSE373: Data Structures & Algorithms

Intuition of Common Runtimes

1200000

1000000

800000

600000

400000

200000

12345678 91011121314151617181920

Asymptotically, y=2N looks way different than the rest and the
rest all look roughly the same.

Winter 2017 CSE373: Data Structures & Algorithms

More Asymptotic Notation

* Big-O Upper bound: O(f(n)) is the set of all functions asymptotically
less than or equal to f(n)

— g(n)isin O(f(n)) if there exist constants ¢ and n, such that
g(n) = cf(n) foralln=n,

* Big-Omega Lower bound: Q(f(n)) is the set of all functions
asymptotically greater than or equal to f(n)

— g(n)isin C(f(n)) if there exist constants c and n, such that
g(n) = cf(n)foralln=n,

e Big-Theta Tight bound: 6(f(n)) is the set of all functions

asymptotically equal to f(n)
— Intersection of O(f(n)) and Q(f(n)) (use different c values)

Winter 2017 CSE373: Data Structure & Algorithms 30

A Note on Big-O Terms

e A common error is to say when you mean
O(function):

— People often say Big-O to mean a tight bound

— Say we have f(n)=n; we could say f(n) is in O(n),
which is true, but only conveys the upper-bound

— Since f(n)=nis also O(n?), it's tempting to say “this
algorithm is exactly O(n)”

— Somewhat incomplete; instead say it is 6(n)
— That means that it is not, for example O(log n)

Winter 2017 CSE373: Data Structures & Algorithms 31

What We’re Analyzing

e The most common thing to do is give an O or 6 bound
to the of an algorithm

e Example: True statements about binary-search algorithm
— Common: B(log n) running-time in the worst-case

— Less common: 0(1) in the best-case (item is in the
middle)

— Less common (but very good to know): the find-in-
sorted array problem is (log n) in the worst-case

e No algorithm can do better (without parallelism)

Winter 2017 CSE373: Data Structures & Algorithms 32

Today’s Takeaways — Algorithm Analysis

e Lots of ways to compare algorithms, today we analyzed
runtime and asymptotic behavior

e Intuition of how the different types of runtimes
compare asymptotically

e Big-O, Big-Theta, and Big-Omega definitions. Being able
to prove them for a given runtime.

Winter 2017 CSE373: Data Structures & Algorithms 33

