CSE 373: Data Structures & Algorithms

Balancing BSTs; Lazy Deletion; Amortized
Analysis

Riley Porter
Winter 2017

Winter 2017 CSE373: Data Structures & Algorithms

Course Logistics

HW1 due last night, HW2 (Asymptotic Runtime Analysis (Big-O) and
Implementing Heaps) released tomorrow and due a week from Friday.

Canvas does weird name things with resubmission, don’t worry about it.
We'll make future HW submissions a zip to avoid it.

If you have weird technical issues with submitting HW, you can email your
TA an attachment of your files. This shouldn’t be the norm, but we can
accept an email with that timestamp as a submission.

Course message board will be better monitored, we have a schedule now.

We'll be posting weekly summaries / self checks. Expect the first two
week’s posted tomorrow. They’re just extra material for you to gauge
how you’re doing, feel free to ask questions about them in office hours or
on the discussion board. This is hopefully to supplement not recording
lectures in case you are nervous about what you need to have learned
each week.

Section materials will be posted online, the day before section, but
solutions only available in section. If you have to miss a day, talk to your
TA.

Winter 2017 CSE373: Data Structures & Algorithms

Topics from Last Lecture

* Floyd’s algorithm for building a heap

— proof of O(N) for buildHeap, which is faster than N inserts
which would be O(NlogN)

e Review from 143 Dictionaries/Maps/Sets: understand how
to be a client of them and the ADT, think about tradeoffs
for implementations.

— implementations all assuming non-hash structure

 Review from 143 Binary Search Trees: structure, insert,
evaluate the runtime of operations. New thing: deleting
from a BST. (findMin and findMax for node replacement)

Winter 2017 CSE373: Data Structures & Algorithms

Review: Dictionary Implementation

We store the keys with their values so all we
really care about is how the keys are stored.

— want fast operations for iterating over the keys

You could think about this in a couple ways:

—
.

i

Winter 2017

Review: Simple Dictionary
Implementations; Operation Analysis

For dictionary with n key/value pairs
insert find delete
Unsorted linked-list
O(1)* O(N) O(N)

Unsorted array 0(1)* O(N) O(N)
Sorted linked list O(N) O(N) O(N)
Sorted array O(N) OflogN) O(N)

* Unless we need to check for duplicates

We'll see a Binary Search Tree (BST) probably does better, but not in the worst

case unless we keep it balanced
Winter 2017 5

Sorted Array: Lazy Deletion

10

12

24

30

41

42

44

45

S0

v

X

v

v

v

v

X

v

v

A general techniqgue for making delete as fast as £ind:
— Instead of actually removing the item just mark it deleted

Plusses:

— Simpler to delete (no shifting). If element is re-added soon
afterwards, simple to insert it again (no shifting)

— Can control removals and do them later in batches (amortized
cost, we'll talk about this later today)

Minuses:
— Extra space for the “is-it-deleted” flag
— Data structure full of deleted nodes wastes space

— Now we can’t use N in runtime: £ind O(1log m) time where m
is data-structure size (okay)

Review: Binary Search Tree

Structure property (“binary”)
— Each node has = 2 children

Order property

— All keys in left subtree smaller
than node’s key e @

— All keys in right subtree larger

than node’s key 9 G @ @

— Result: easy to find any given key

Winter 2017

BuildTree for BST

e Let’s consider buildTree (Insert all, starting from an
empty tree)

 Insertdatal, 2, 3,4,5,6,7, 8,9 into an empty BST

— If inserted in given order,
what is the tree?

2
— What big-O runtime for Not f?a(n : lace
this kind of sorted input? ey P

— |Is inserting in the reverse order
any better? Nope, the BST would
just be the opposite

Winter 2017

Intuition: Balanced BSTs are good

What if we re-arrange the data when inserting

— median first, then left median, right median, etc.
—5,3,7,2,1,4,8,6,9

— What tree does that give us?

— What big-O runtime?

O(N logN), definitely better

Winter 2017 9

Intuition: Unbalanced BSTs are bad

* Even if we balance a BST during buildTree,
a series of sorted data insertions can mess up

our structure badly

* With a bad structure,
all operations are O(N):
— find
— insert
—delete

BST Operations Analysis

For BST with n nodes

insert find delete
Worst Case O(N) O(N) O(N)
(unbalanced)
Average Case O(logN) Of(logN) O(logN)

(balanced)

Hard to keep a BST balanced, so BSTs are only “probably” better as
implementations than a sorted array. We'll see how to keep them balanced
on Friday

Winter 2017 11

Lazy Deletion for BSTs:

 Plusses:

— Simpler: delete with £indMin and £indMax are
difficult operations, this minimizes those traversals

— Can do “real deletions” later as a batch

— Some inserts can just “undelete” a tree node

* Minuses:
— Can waste space and slow down find operations

— Makes some operations more complicated with extra
nodes in the tree

Keeping BSTs Balanced

* For aBST with N nodes inserted in arbitrary order
— Average height is O(1og N) — intuition on Friday’s slides,
proof in text

— Worst case height is O(N)

 Simple, commonly occurring cases, such as inserting
in key order, lead to the worst-case scenario

Solution: Require a Balance Condition that maintains a
nice structure:

1. Ensures depth is always O(log N) —strong enough!
2. |s efficient to maintain — not too strong!

Winter 2017 13

Potential Balance Conditions

1. Left and right subtrees of every node
have equal number of nodes

Too strong!
Only perfect trees (2" — 1 nodes) Cé é

2. Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2" — 1 nodes)

Potential Balance Conditions

3. Left and right subtrees
of the root
have equal number of é
nodes

Too weak!

Height mismatch example:
4. Left and right subtrees
of the root
have equal height
Too weak! 5 é)

Double chain example:

The AVL Balance Condition

Left and right subtrees of every node
have heights differing by at most 1

Definition: balance(node) = height(node.left) —
height(node.right)

AVL property: for every node x, =1 < balance(x) =1

* Ensures small depth

— Will prove this by showing that an AVL tree of height
h must have a number of nodes exponential in h

e Efficient to maintain
— Using single and double rotations

Winter 2017

Any guestions on Dictionaries or BSTs?

We’ll explore the AVL balance condition and AVL
trees more on Friday.

For now let’s consider something we skipped
when talking about asymptotic runtime analysis

Winter 2017 17 CSE373: Data Structu.res &
Algorithms

Amortized Runtime Complexity

e Recall our plain-old stack implemented as an array that
doubles its size if it runs out of room

— How can we claim push is O(1) time if resizing is O(n) time?
— We can’t, but we can claim it’s an O(1) amortized operation

* What does amortized mean?
* When are amortized bounds good enough?
e How can we prove an amortized bound?

Will just do two simple examples
— Text has more sophisticated examples and proof techniques
— Idea of how amortized describes average cost is essential

Amortized Runtime Intuition

Consider implementing a Stack with an Array. What if we had initially 5 empty slots, and
every time it gets full, we add an additional size * 2 slots and have to copy over all the old
data? What is the worst case runtime for the add (element) operation?

Cost per operation

Winter 2017

Worst Case O(N)

...N

Operations: 1, 2, ..., N

19

i

Worst Case
Operation O(N)

CSE373: Data Structures &
Algorithms

Amortized Runtime Intuition

Consider implementing a Stack with an Array. What if we had initially 5 empty slots, and
every time it gets full, we add an additional size * 2 slots and have to copy over all the old
data? What is the amortized runtime for the add (element) operation?

Y
c
e
©
—
O]
Q
@]
)
Q
@
O
(@)
Amortized Cost O(1)
H B N N
Operations: 1, 2, ..., N
Winter 2017 20 CSE373: Data Structures &

Algorithms

“Building Up Credit” Intuition

e Can think of preceding “cheap” operations as
building up “credit” that can be used to “pay
for” later “expensive” operations

* Because any sequence of operations must be

under the bound, enough “cheap” operations
must come first

— Else a prefix of the sequence, which is also a
sequence, would violate the bound

Amortized Runtime Complexity

If a sequence of M operations takes O(M £ (n)) time,
we say the amortized runtime is O(£ (n))

Amortized bound: worst-case guarantee over sequences of

operations
— Example: If any n operations take O(n), then amortized O(1)

— Example: If any n operations take O(n3), then amortized O(n?)

* The worst case time per operation can be larger than £ (n)

— As long as the worst case is always “rare enough” in any sequence of
operations

Amortized guarantee ensures the average time per operation for any
sequence is O(£ (n))

Winter 2017 22 CSE373: Data Structu.res &
Algorithms

Example #1: Resizing stack

A stack implemented with an array where we double the size of the
array if it becomes full

Claim: Any sequence of push/pop/isEmpty is amortized O(1)

Need to show any sequence of M operations takes time O(M)
— Recall the non-resizing work is O(M) (i.e., M*O(1))
— The resizing work is proportional to the total number of element
copies we do for the resizing
— So it suffices to show that:
After M operations, we have done < 2M total element copies
(So average number of copies per operation is bounded by a constant)

Amount of copying

_'_l

After M operations, we have done < 2M total element
copies

Let n be the size of the array after M operations
— Then we have done a total of:
n/2 + n/4 + n/8 + .. INITIAL SIZE < n
element copies

— Because we must have done at least enough push
operations to cause resizing up to size n:

M= n/2
— So
2M = n > number of element copies

Other approaches

If array grows by a constant amount (say 1000),

operations are not amortized O(1)
— After O(M) operations, you may have done ®(M2) copies

If array doubles when full and shrinks when 1/2 empty,

operations are not amortized O(1)

— : pop once and shrink, push once and grow, pop
once and shrink, ...

If array doubles when full and shrinks when 3/4 empty,

it is amortized O(1)

— Proof is more complicated, but basic idea remains: by the time
an expensive operation occurs, many cheap ones occurred

Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {

Stack<E> 1n = new Stack<E>();
Stack<E> out = new Stack<E>() ;
vold enqueue (E x){ in.push (x);

E dequeue () {
if (out.isEmpty ()) {
while(!in.isEmpty()) {
out.push (in.pop()) ;

}

return out.pop();

}

Winter 2017 26

}

enqueue: A, B, C

out

CSE373: Data Structures &
Algorithms

Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {

Stack<E> 1n = new Stack<E>();
Stack<E> out = new Stack<E>() ;
vold enqueue (E x){ in.push (x);

E dequeue () {
if (out.isEmpty ()) {
while(!in.isEmpty()) {
out.push (in.pop()) ;

}

return out.pop();

}

Winter 2017 27

}

dequeue
A
B
C
in out

CSE373: Data Structures &
Algorithms

Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {

Stack<E> 1n = new Stack<E>();
Stack<E> out = new Stack<E>() ;
vold enqueue (E x){ in.push (x);

E dequeue () {
if (out.isEmpty ()) {
while(!in.isEmpty()) {
out.push (in.pop()) ;

}

return out.pop();

Winter 2017 28

}

enqueue D, E

E B
D C
in out

CSE373: Data Structures &
Algorithms

Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {

Stack<E> 1n = new Stack<E>();
Stack<E> out = new Stack<E>() ;
vold enqueue (E x){ in.push (x);

E dequeue () {
if (out.isEmpty ()) {
while(!in.isEmpty()) {
out.push (in.pop()) ;

}

return out.pop();

Winter 2017 29

} dequeue twice

CBA

m

in out

CSE373: Data Structures &
Algorithms

Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {
Stack<E> in = new Stack<E>();

Stack<E> out = new Stack<E>() ;

vold enqueue (E x){ in.push (x);
E dequeue () {
if (out.isEmpty ()) {
while(!in.isEmpty()) {
out.push (in.pop()) ;

}

return out.pop();

}

Winter 2017 30

}

dequeue again

DCBA

in out

CSE373: Data Structures &
Algorithms

Correctness and usefulness

* If xis enqueued before y, then x will be popped
from in later than y and therefore popped from out

sooner thany
— So it is a queue

 Example:

— Wouldn’t it be nice to have a queue of t-shirts to wear
instead of a stack (like in your dresser)?

— So have two stacks
* jn: stack of t-shirts go after you wash them
e out: stack of t-shirts to wear
* if out is empty, reverse in into out

Analysis

* dequeue is not O(1) worst-case because out might be
empty and in may have lots of items

e But if the stack operations are (amortized) O(1), then
any sequence of queue operations is amortized O(1)

— The total amount of work done per element is 1 push
onto in, 1 pop off of in, 1 push onto out, 1 pop off of out

— When you reverse n elements, there were n earlier O(1)
enqueue operations to average with

Amortized useful?

When the average per operation is all we care about (i.e.,
sum over all operations), amortized is perfectly fine

— This is the usual situation

If we need every operation to finish quickly (e.g., in a web
server), amortized bounds may be too weak

While amortized analysis is about averages, we are
averaging cost-per-operation on worst-case input
— Contrast: Average-case analysis is about averages across
possible inputs. Example: if all initial permutations of an array
are equally likely, then quicksort is O(n Llog n) on average
even though on some inputs it is O(n2))

Not always so simple

Proofs for amortized bounds can be much more
complicated

Example: Splay trees are dictionaries with
amortized O(1log n) operations
— See Chapter 4.5 if curious

For more complicated examples, the proofs need
much more sophisticated invariants and “potential
functions” to describe how earlier cheap operations
build up “energy” or “money” to “pay for” later
expensive operations

— See Chapter 11 if curious

