CSE373: Data Structures & Algorithms

Software-Design Interlude — Preserving Abstractions

Riley Porter
Winter 2017

CSE373: Data Structures & Algorithms

Course Logistics

e HW1 extra credit concerns: | know how
Extra Credit works. Canvas doesn’t.

* HW2 due. Last day to submit with late days
is tonight.

* HW3 out, topic is hashing. See slides from
last Wednesday and Friday (same slide deck)

Today’s Topic: Abstractions

 The ADTs we cover in class are important to
know conceptually but “in real life”, they’ll
be provided by libraries

e The key idea of an abstraction arises all the time
— Clients do not know how it is implemented
— Clients do not need to know

— Clients cannot “break the abstraction” no
matter what they do

Client vs. Implementer

* Provide a reusable interface without revealing
implementation
— You’ve been practicing this throughout 143 already

— More difficult than it sounds due to aliasing and field-
assignment (topic for today)

 We study concepts it in terms of ADTs instead of
particular implementations in this class

— Will use priority queues as our example in this lecture,
but any ADT would do

Recall the abstraction

Clients:

“not trusted by ADT
implementer”

e Can perform any
sequence of ADT
operations

 (Can do anything
type-checker
allows on any
accessible objects

new POQ(...)
insert (...)
deleteMin (...)

1sEmpty ()

Implementer:

e Should document how
operations can be used and
what is checked (raising
appropriate exceptions)

— E.g., parameter for
method x not null

e |f used correctly, correct
priority queue for any client

e (lient “cannot see” the
implementation

— E.g., binary min heap

Review: commenting

Let’s practice our skills with the Client vs
Implementer abstraction, through commenting

(look at code)

CSE373: Data Structures &
Algorithms

Commenting exercise: takeaways

e private comments for other coders looking at
your file

* all public functionality should be commented
for clients of your class

* implementation details should not be in public
comments

 determine the line of abstraction, make sure
you’'re not giving implementation details over
that line

Coding Abstractions: our example

A priority queue with to-do items, so earlier dates “come
first”

public class ToDoItem {
.. // some private fields (date, description)
public void setDate (Date d) {..}
public void setDescription(String d) {..}
. // more methods
}
public class Date {
. // some private fields (year, month, day)
public int getYear () {..}
public void setYear (int y) {..}
. // more methods

}

// continued next slide..

CSE373: Data Structures &

Algorithms

Coding Abstractions: our example

A priority queue with to-do items, so earlier
dates “come first”

public class ToDoPQ {
.. // some fields (array, size, ..)
public ToDoPQ () {..}
volid insert (ToDoltem t) ({..}
ToDoItem deleteMin () {..}
boolean i1isEmpty () ({..}

}

public class ToDoItem { .. }

public class Date { .. }

CSE373: Data Structures &
Algorithms

A mistake we taught you in 143

* Can you think of some more client code that

might break the ToDoPQ?

}

//
g

// other fields

public class ToDoPQ {

public ToDolItem[] heap;

// methods
public ToDoPQ ()

{..}

volid insert (ToDolItem t)

client code:
= new ToDoPQ () ;

{..

}

10

CSE373: Data Structures &
Algorithms

A mistake we taught you in 143

Why we trained you to “mindlessly” make fields private:

public class ToDoPQ {
.. // other fields
public ToDoItem[] heap; // problem!

public ToDoPQ () ({..}
vold insert (ToDoItem t) {..}

}
// client:

pg = new ToDoPQ() ;
pg.heap = null;
pg.insert(..); // likely exception

Today’s lecture: private does not solve all your problems!

11

CSE373: Data Structures &
Algorithms

Less obvious mistakes

Can you think of some more client code that
might break the ToDoPQ?

public class ToDoPQ {
.. // all private fields

public ToDoPQ () ({..}
voild insert (ToDoItem 1) {..}

ToDoItem deleteMin () {..}

}

// client:
ToDoPQ pa = new ToDoPQ();
ToDoItem 1 = new ToDoItem(..);

pg.insert (i) ;

CSE373: Data Structures &
12 ;
Algorithms

Less obvious mistakes

public class ToDoPQ {
.. // all private fields

public ToDoPQ () {..}
void insert (ToDoItem i) {..} // potential problem

ToDoItem deleteMin () {..} // potential problem

// client:
ToDoPQ pg = new ToDoPQ() ;
ToDoItem 1 = new ToDolItem(..);

pg.insert (1) ;
1.setDescription(“some different thing”);
pg.insert(i); // same object after update
x = deleteMin(); // x’'s description???

y = deleteMin(); // y’'s description???

CSE373: Data Structures &
13 ;
Algorithms

Aliasing and mutation

date:
description: “...”

PO —

* Client was able to update something inside the
abstraction because client had an alias to it!

— It is too hard to reason about and document what should
happen, so better software designs avoid the issue!

CSE373: Data Structures &

4 Algorithms

More bad clients

What is wrong with this code? What is the date
of the ToDoltem stored in variable x?

ToDoPQ SIS
ToDoItem 11
ToDoItem 12 =
pg.insert (il) ;
pg.1insert (12) ;
1l.setbhate(...);
X = deleteMin

new ToDoPQ () ;
new ToDoItem(..); // year 2013
new ToDoItem(..); // year 2014

// year 2015
()7

CSE373: Data Structures &

= Algorithms

More bad clients

What is wrong with this code? What is the date

of the ToDoltem stored in variable x?

ToDoPQ pg = new ToDoPQ() ;

ToDolItem i2 =
pg.insert (il) ;
pg.1insert (12) ;
il.setDate (..);

// year 2015

the date is now in year 2015

ToDoItem il = new ToDolItem(..); // year 2013
new ToDoItem(..); // year 2014

x = deleteMin(); // stores the data for il, but

16

CSE373: Data Structures &
Algorithms

12

More bad clients

date:
description: “...”

date:
descriptiop: “...

11 —

PO —

CSE373: Data Structures &
Algorithms

17

More bad clients

What is wrong with this client code? What
happens when you compare the dates of i1l and
12 in order to do percolateUp when inserting?

pg = new ToDoPQ() ;

ToDoItem 11 = new ToDolItemf(..);
pg.insert (11) ;

il.setDate (null) ;

ToDoItem 12 = new ToDoltem(..)
pg.1insert (12) ;

CSE373: Data Structures &
18 .
Algorithms

More bad clients

pg = new ToDoPQ() ;

ToDoItem 11 = new ToDoltem(..)
pg.insert (il);
1l.setbhate(null);

ToDoltem i2 = new ToDoltem(..);

pg.insert (12) ;

// NullPointerException

Get exception inside data-structure code even if insert did a

careful check the first time that the date in the ToDoItemis not null

Bad client later invalidates the check

19

CSE373: Data Structures &
Algorithms

The general fix

e C(Clients can’t be trusted with pointers to your data.

* Avoid aliases into the internal data (the “red arrows”) by
copying objects as needed

— Do not use the same objects inside and outside the abstraction
because two sides do not know all mutation (field-setting) that might
occur

public class ToDoPQ {
A first attempt:
vold insert (ToDoltem 1) {

ToDoItem internal 1 = 1;

}

CSE373: Data Structures &

20 Algorithms

Must copy the object

Notice this version accomplishes nothing
— Still the alias to the object we got from the client:

public class ToDoPQ ({
vold 1nsert (ToDoItem 1) ({
ToDoItem internal 1 = 1;
// internal i1 refers to same object

second attempt:

public class ToDoPQ {

volid insert (ToDoltem 1) {
ToDoItem internal 1 =
new ToDolItem(li.date,1.description);
// use only the internal object

CSE373: Data Structures &

21 Algorithms

Copying works...

date:
description: “...”

_—~" _description: “...”

e —

ToDoltem i = new ToDoItem(..);

pg = new ToDoPQ() ;

pg.1insert (1) ;

1.setDescription (Vsome different thing”);
pg.insert (i) ;

X = deleteMin () ;

y = deleteMin () ;

—————data Structures &
Algorithms

22

Didn’t do enough copying yet
/

date:
description: “...”

i
7 _description: “...”

e —

Date d = new Date(..)

ToDoItem 1 = new ToDoItem(d, “buy beer”);
pg = new ToDoPQ() ;

pg.insert (i) ;

d.setYear (2015) ;

CSE373: Data Structures &
23 .
Algorithms

Deep copying (copy all the way down)

What if the client has an alias to i.date? Then depending on the
implementation for ToDoltem, they may still have a reference to

internal_i.date or internal_i.description.

public class ToDoPQ {
vold insert (ToDoItem 1) {
ToDoItem internal 1 =

new ToDolItem(i.date,i.description);

. // use only the internal object

public class ToDolItem ({
public ToDoItem(Date d, String desc) {
this.d = new Date(d.year, d.month,
d.day) ;
this.desc = desc;

CSE373: Data Structures &

24

Algorithms

If you own all the objects being used, you can control the copying at
every level. If you don’t, then to deep copy, you have to copy

everything.

CORYIALLYT

HEI

25

LTS

'.‘u;:"'.lﬂ_-“v:-k_-(n_“

CSE373: Data Structures &
Algorithms

Deep copying (copy all the things)

* For copying to work fully, usually need to also make
copies of all objects referred to (and that they refer to and

so on...)
— All the way down to int, double, String, ...
— Called deep copying (versus our first attempt shallow-copy)

* Rule of thumb: Deep copy of things passed into

abstraction
public class ToDoPQ {

volid insert (ToDoItem 1) {
ToDoItem internal 1 =
new ToDolItem(new Date(..),
i.description);
. // use only the internal object

Constructors take input too

 General rule: Do not “trust” data passed to constructors
— Check properties and make deep copies

* Example: Floyd’s algorithm for buildHeap should:

— Check the array (e.g., for null values in fields of objects or array
positions)
— Make a deep copy: new array, new objects

public class ToDoPQ {
// a second constructor that uses
// Floyd’s algorithm, but good design
// deep-copies the array (and its contents)
void PriorityQueue (ToDoltem[] items) {

}

CSE373: Data Structures &

27 Algorithms

That was copy-in, now copy-out...

e So we have seen:

— Need to deep-copy data passed into abstractions to avoid
pain and suffering

e Next:

— Need to deep-copy data passed out of abstractions to
avoid pain and suffering (unless data is “new” or no longer
used in abstraction)

e Then:

— If objects are immutable (no way to update fields or things
they refer to), then copying unnecessary

deleteMin is fine

public class ToDoPQ {

ToDoltem deleteMin () {
ToDoItem ans = heapl[0];
.. // algorithm involving percolateDown
return ans;

}

* Does not create an external alias because object
returned is no longer part of the data structure

* Returns an alias to object that was in the heap, but
now it is not, so conceptual “ownership”

“transfers” to the client

getMin needs copying

date:
description: “...

PO —

ToDoItem 1 =

new ToDoItem(...);

rg = new ToDoPQ();
X = pg.getMin () ;

x.setDate(..);

30

public class ToDoPQ ({

ToDoItem getMin () {

int ans = heap[0];
return ans;

CSE373: Data Structures &
Algorithms

fixed: deep copy on return

Just like we deep-copy objects from clients before adding to
our data structure, we should deep-copy parts of our data
structure and return the copies to clients

Copy-in and copy-out

public class ToDoPQ {
ToDoItem getMin () {
ToDoItem ans = heapl[0];
return new ToDoltem(new Date(..),

ans.description);

CSE373: Data Structures &
Algorithms

31

Less copying

* (Deep) copying is one solution to our aliasing problems

* Another solution is immutability
— Make it so nobody can ever change an object or any other
objects it can refer to (deeply)
— Allows external aliases, but immutability makes them
harmless

* |nJava, a £inal field cannot be updated after an object
is constructed, so helps ensure immutability
— But £inal is a “shallow” idea and we need “deep”
immutability

Immutability: This works

public class Date {
private final int year;
private final String month;
private final String day;

}
public class ToDoltem ({

private final Date date;
private final String description;

}
public class ToDoPQ {

void insert (ToDoItem i) {/*no copy-in needed!*/}
ToDoItem getMin () {/*no copy-out needed!*/}

Notes:
* String objects are immutable in Java
e (Using String formonth and day is not great style though)

CSE373: Data Structures &

3 Algorithms

Immutability: This does not work

public class Date {
private final int year;
private String month; // not final
private final String day;

}
public class ToDolItem ({

private final Date date;
private final String description;

}

public class ToDoPQ {
void insert (ToDoItem i) {/*no copy-in*/}
ToDoItem getMin () {/*no copy-out*/}

}

Client could mutate a Date’s month that is in our data structure
* So must do entire deep copy of ToDoItem

CSE373: Data Structures &

34 Algorithms

final is shallow

public class ToDolItem ({
private final Date date;
private final String description;

}

Here, £inal means no code can update the date or
description fields after the object is constructed

So they will always refer to the same Date and String
objects

But what if those objects have their contents change
— Cannot happen with String objects
— For Date objects, depends how we define Date

So final is a “shallow” notion, but we can use it “all
the way down” to get deep immutability

Immutability: This works

 When deep-copying, can “stop” when you get to immutable data
— Copying immutable data is wasted work, so poor style

public class Date { // immutable
private final int year;
private final String month;
private final String day;

}
public class ToDolItem ({

private Date date;
private String description;
}
public class ToDoPQ {
ToDoItem getMin () {
ToDoItem ans = heapl[0];
return new ToDoltem(ans.date, // okay!
ans.description);

What about this?

public class Date { // immutable

}
public class ToDoItem { // immutable (unlike last slide)

}
public class ToDoPQ {

// a second constructor that uses

// Floyd’s algorithm

void PriorityQueue (ToDoltem[] items) {
// what copying should we do?

CSE373: Data Structures &

37 Algorithms

What about this?

public class Date { // immutable

}
public class ToDoItem { // immutable (unlike last slide)

}
public class ToDoPQ {

// a second constructor that uses

// Floyd’s algorithm

void PriorityQueue (ToDoltem[] items) {
// what copying should we do?

Copy the array, but do not copy the ToDoItem or Date objects

CSE373: Data Structures &

38 Algorithms

Today’s Takeaways

* Client vs Implementer: what is the line of
abstraction

* Copy-in and Copy-out to preserve
abstraction and keep aliases from the client

* Deep copy and Immutability to keep your
client from messing with your data

For future: Homework 4

e Won’t be released until after the midterm

* You might choose to add to provided classes that
make them not immutable

— Leads to more copy-in-copy-out, but that’s fine!

* Oryou might leave them immutable and keep things
in another dictionary (e.g., a HashMap)

There is more than one good design, but preserve your
abstraction

— Great practice with a key concept in software design

CSE373: Data Structures &

40 Algorithms

