CSE 373: Topics Covered (post-midterm: July 24 — August 16, 2017)
(Note that this is only a big-picture overview — it leaves out a lot of detail)

Graphs
o General knowledge & terminology
e Mathematical representation
(G=(V, E),etc.)
e Undirected & Directed Graphs

o Self Edges
e Weights

e Paths

e Cycles

e Connectedness
e Trees as graphs
e DAGs
o Density & Sparsity
o Graph data structures
e Adjacency Matrix
e Adjacency List
e When to use which and why

Graph algorithms
o Topological Sort
e Whatitis
e Necessary conditions
e Two algorithms for topological sort
o Traversals
e Depth First Search (DFS)
e Breadth First Search (BFS)
e When to use which
o Shortest path
e For unweighted graphs
e For weighted graphs (Dijkstra's
algorithm)
e Two approaches to Dijkstra's, when
to use which
© Spanning Trees
e Approach #1: DFS
e Approach #2: Add acyclic edges
o Minimum Spanning Tree (MST)
e Prim's Algorithm
e Kruskal's Algorithm

Sorting Algorithms
o Terminology
e Stable sort
e In-place sort
e External sort
o Comparison Sort
e Insertion Sort
e Selection Sort
e Heapsort (including in-place version)
e Merge Sort (including time- & space-
saving versions)
e Quicksort (including different pivot
rules and in-place quicksort)
e Using cutoffs
o Other Sorts
e Conditions that let you use them
e Bucket Sort (a.k.a. Bin Sort)
e Radix Sort
o How to sort massive data
e What algorithms make the most
sense and why
e How to sort
o For each algorithm:
e Worst- best-case scenarios & run
times
e Other pro's/con's of each
e When to use which

General Algorithms Knowledge

o Analyzing algorithms
e Correctness (less emphasis here)
e Efficiency

o Several algorithm types
e Greedy algorithms
e Dynamic programming
e Divide-and-conquer

o PvsNP

Software Design: Preserving Abstractions
o Abstraction (what it is, why it's important)

o Memory representation (call stack, heap space, program counter, etc.)
o Aliasing and mutations, how they're problematic
o Copy-in
o Copy-out
o Immutability (e.g. using the 'final' keyword)
o Deep copies & deep immutability (and why)
Parallelism

o Terminology
o Parallelism vs Concurrency
o Shared memory & race conditions
o Threads / Fork-join programming
e How to use in Java (subclass, create 'thread' object, start(), join())
e What happens under the hood
Divide-and-conquer approach and why
Map & Reduce
Analysis (including Amdahl's Law)

Design decisions
o Ability to ask questions about problem to inform solution
o How to analyze/justify a decision
o Time efficiency
e Space efficiency
e How parallelizable (in a few cases)
o Fluency with data structures & algorithms concepts/knowledge
e Purposes a data structure is well-suited for and why
= Available operations
= Efficiency of basic operations
= Space usage (conceptually)
e Pro'sand con's of different algorithms

CSE 373: Topics Covered (pre-midterm: June 19 — July 19, 2017)
(Note that this is only a big-picture overview — it leaves out a lot of detail)

e Abstract Data Types (ADTs) and
Data Structures

¢ Stacks and Queues

Linked list implementation
Array implementations (including
circular arrays)

e Asymptotic Analysis

Big-O of code snippets

Inductive Proofs

Recurrence Relations (and when
to apply them)

Formal definition of Big-O

Big-O and -Omega, Theta, little-o
and -omega

Amortized Analysis

e Dictionary ADT

e Hash Tables

Hash functions, hash values, and
indexing

insert, find, remove

Collisions

Separate chaining

Open addressing / probing
Linear probing

Quadratic probing

Double hashing

Rehashing

e Generic trees

Terminology

e Binary trees

Terminology
Representation
Calculating the height
Traversals

Binary Search Tree (BST)

find

insert

delete (3 cases)

buildTree

Terminology (e.g. successor,
predeccessor)

Balanced vs unbalanced trees

AVL Trees

Balance conditions
AVL balance condition
Rotations

insert (4 cases)

Priority Queue ADT

Heaps

insert & delete

Percolations

Array
representation/implementation
buildTree (client version and
Floyd's Method /heapify)
d-heaps

For each data structure

Ways to implement
Pros, Cons, and other reasons to
choose one over the other

