
CSE	373:	Topics	Covered		(post-midterm:	July	24	–	August	16,	2017)	
(Note	that	this	is	only	a	big-picture	overview	–	it	leaves	out	a	lot	of	detail)	
	
Graphs	
o General	knowledge	&	terminology	

• Mathematical	representation	
(	G	=	(V,	E),	etc.)	

• Undirected	&	Directed	Graphs	
• Self	Edges	
• Weights	
• Paths	
• Cycles	
• Connectedness	
• Trees	as	graphs	
• DAGs	
• Density	&	Sparsity	

o Graph	data	structures	
• Adjacency	Matrix	
• Adjacency	List	
• When	to	use	which	and	why	

	
Graph	algorithms	
o Topological	Sort	

• What	it	is	
• Necessary	conditions	
• Two	algorithms	for	topological	sort	

o Traversals	
• Depth	First	Search	(DFS)	
• Breadth	First	Search	(BFS)	
• When	to	use	which	

o Shortest	path	
• For	unweighted	graphs	
• For	weighted	graphs	(Dijkstra's	

algorithm)	
• Two	approaches	to	Dijkstra's,	when	

to	use	which	
o Spanning	Trees	

• Approach	#1:	DFS	
• Approach	#2:	Add	acyclic	edges	

o Minimum	Spanning	Tree	(MST)	
• Prim's	Algorithm	
• Kruskal's	Algorithm	

	
	

Sorting	Algorithms	
o Terminology	

• Stable	sort	
• In-place	sort	
• External	sort	

o Comparison	Sort	
• Insertion	Sort	
• Selection	Sort	
• Heapsort	(including	in-place	version)	
• Merge	Sort	(including	time-	&	space-

saving	versions)	
• Quicksort	(including	different	pivot	

rules	and	in-place	quicksort)	
• Using	cutoffs	

o Other	Sorts	
• Conditions	that	let	you	use	them	
• Bucket	Sort	(a.k.a.	Bin	Sort)	
• Radix	Sort	

o How	to	sort	massive	data	
• What	algorithms	make	the	most	

sense	and	why	
• How	to	sort	

o For	each	algorithm:	
• Worst-	best-case	scenarios	&	run	

times	
• Other	pro's/con's	of	each	
• When	to	use	which	

	
General	Algorithms	Knowledge	
o Analyzing	algorithms	

• Correctness	(less	emphasis	here)	
• Efficiency	

o Several	algorithm	types	
• Greedy	algorithms	
• Dynamic	programming		
• Divide-and-conquer	

o P	vs	NP	
	

	
	 	



Software	Design:	Preserving	Abstractions	
o Abstraction	(what	it	is,	why	it's	important)	
o Memory	representation	(call	stack,	heap	space,	program	counter,	etc.)	
o Aliasing	and	mutations,	how	they're	problematic	
o Copy-in	
o Copy-out	
o Immutability	(e.g.	using	the	'final'	keyword)	
o Deep	copies	&	deep	immutability	(and	why)	

	
Parallelism	
o Terminology	
o Parallelism	vs	Concurrency	
o Shared	memory	&	race	conditions	
o Threads	/	Fork-join	programming	

• How	to	use	in	Java	(subclass,	create	'thread'	object,	start(),	join())	
• What	happens	under	the	hood	

o Divide-and-conquer	approach	and	why	
o Map	&	Reduce	
o Analysis	(including	Amdahl's	Law)	

	
Design	decisions	
o Ability	to	ask	questions	about	problem	to	inform	solution	
o How	to	analyze/justify	a	decision	

• Time	efficiency	
• Space	efficiency	
• How	parallelizable	(in	a	few	cases)	

o Fluency	with	data	structures	&	algorithms	concepts/knowledge		
• Purposes	a	data	structure	is	well-suited	for	and	why	

§ Available	operations	
§ Efficiency	of	basic	operations	
§ Space	usage	(conceptually)	

• Pro's	and	con's	of	different	algorithms	
	
	

	

	 	



CSE	373:	Topics	Covered	(pre-midterm:	June	19	–	July	19,	2017)		
(Note	that	this	is	only	a	big-picture	overview	–	it	leaves	out	a	lot	of	detail)	
	
• Abstract	Data	Types	(ADTs)	and		

Data	Structures	
	

• Stacks	and	Queues		
• Linked	list	implementation	
• Array	implementations	(including	

circular	arrays)	
	

• Asymptotic	Analysis	
• Big-O	of	code	snippets	
• Inductive	Proofs	
• Recurrence	Relations	(and	when	

to	apply	them)	
• Formal	definition	of	Big-O	
• Big-O	and	-Omega,	Theta,	little-o	

and	-omega		
• Amortized	Analysis	

	

• Dictionary	ADT	
	

• Hash	Tables	
• Hash	functions,	hash	values,	and	

indexing	
• insert,	find,	remove	
• Collisions	
• Separate	chaining	
• Open	addressing	/	probing	
• Linear	probing	
• Quadratic	probing	
• Double	hashing	
• Rehashing	

	

• Generic	trees	
• Terminology	

	

• Binary	trees	
• Terminology	
• Representation	
• Calculating	the	height	
• Traversals	

• Binary	Search	Tree	(BST)	
• find	
• insert	
• delete	(3	cases)	
• buildTree	
• Terminology	(e.g.	successor,	

predeccessor)	
• Balanced	vs	unbalanced	trees	

	
• AVL	Trees	

• Balance	conditions	
• AVL	balance	condition	
• Rotations	
• insert	(4	cases)	

	
• Priority	Queue	ADT	

	
• Heaps	

• insert	&	delete	
• Percolations		
• Array	

representation/implementation	
• buildTree	(client	version	and	

Floyd's	Method	/heapify)	
• d-heaps	

	
• For	each	data	structure	

• Ways	to	implement	
• Pros,	Cons,	and	other	reasons	to	

choose	one	over	the	other	
	

	


